О разрешимости выводимости замкнутых термов и выразимости операций над ними

Г.В. Боков

В работе исследуются алгебры замкнутых термов, операции которых задаются формулами первого порядка с единственным предикатом равенства. Для таких алгебр показано, что в общем случае проблема выводимости термов алгоритмически неразрешима. При рассмотрении частных случаев проблемы выводимости строится соответствие Галуа между операциями и конечными автоматами над термами. На его основе доказаны достаточные условия алгоритмической разрешимости частных случаев проблемы выводимости термов и проблемы выразимости операций над термами.

Ключевые слова: алгебры термов, проблема выводимости, проблема выразимости, автоматы над термами, соответствие Галуа.

1. Основные понятия и результаты

Пусть $\mathcal{F} := \left\{ f_1^{(n_1)}, \dots, f_k^{(n_k)} \right\}$ — конечное множество функциональных символов, в котором $f_i^{(n_i)}$ — это функциональный символ f_i арности n_i . Будем предполагать, что имеется счётный универсум переменных $\mathcal{U} = \{u_1, u_2, \dots\}$. Определим понятие терма над множеством функциональных символов \mathcal{F} и множеством переменных $X \subseteq \mathcal{U}$:

- 1) Если $x \in X$, то x терм;
- 2) Если $f^{(n)} \in \mathcal{F}$ и t_1, \dots, t_n термы, то $f(t_1, \dots, t_n)$ терм.

Обозначим через $T_{\mathcal{F}}(X)$ множество всех термов над множеством функциональных символов \mathcal{F} и множеством переменных X. Если

 $X = \emptyset$, то будем писать $T_{\mathcal{F}}$ вместо $T_{\mathcal{F}}(X)$. Чтобы множество $T_{\mathcal{F}}$ было непустым, далее будем предполагать, что \mathcal{F} всегда содержит хотя бы один функциональный символ арности 0. Элементы множества $T_{\mathcal{F}}$ будем называть замкнутыми термами.

Для того, чтобы определить операции над термами, воспользуемся теорией первого порядка, в которой функциональными символами являются символы из множества \mathcal{F} , предикатным символом выступает предикат =, а логическими символами и кванторами являются символы из множества $S := \{\exists, \land, \neg\}$.

Пусть S' — множество логических символов из S. Обозначим через $\Phi(S')$ множество всех формул первого порядка, которые (помимо переменных, функциональных символов, предиката = и скобок) содержат только логические символы и кванторы из S'. Если $S' = \varnothing$, то $\Phi(S')$ состоит только из формул вида t = s, где $t, s \in T_{\mathcal{F}}(\mathcal{U})$; если $S' = \{\exists, \land\}$, то $\Phi(S')$ — примитивно позитивные формулы [10]. Положим $\Phi^{(n)}(S')$ — формулы из $\Phi(S')$ с n свободными переменными, $\Phi_{\Pi} := \Phi(\{\exists, \land\})$ и $\Phi := \Phi(\{\exists, \land, \neg\})$.

Каждая формула $\mathfrak{A} \in \Phi^{(n)}$ задаёт n-местный предикат $\rho_{\mathfrak{A}}$ на множестве $T_{\mathcal{T}}$:

$$\rho_{\mathfrak{A}}(t_1,\ldots,t_n)=1\leftrightharpoons T_{\mathcal{F}}\models \mathfrak{A}(t_1,\ldots,t_n)$$

для любых $t_1, \ldots, t_n \in T_{\mathcal{F}}$, где $T_{\mathcal{F}} \models \mathfrak{A}(t_1, \ldots, t_n)$ означает истинность формулы \mathfrak{A} на наборе термов t_1, \ldots, t_n в множестве термов $T_{\mathcal{F}}$, то есть все замкнутые переменные пробегают элементы множества $T_{\mathcal{F}}$. Формулу $\mathfrak{A} \in \Phi^{(n+1)}$ будем называть допустимой, если $\rho_{\mathfrak{A}}(x_1, \ldots, x_n, y)$ является графиком [8] некоторой операции на $T_{\mathcal{F}}$, то есть соответствие $\omega_{\mathfrak{A}}$, заданное соотношением

$$\omega_{\mathfrak{A}}(t_1,\ldots,t_n)=t\leftrightharpoons \rho_{\mathfrak{A}}(t_1,\ldots,t_n,t)=1$$

для любых $t_1, \ldots, t_n, t \in T_{\mathcal{F}}$, является n-местной операцией на множестве $T_{\mathcal{F}}$. Обозначим множество всех таких n-местной операций на множестве $T_{\mathcal{F}}$ через

$$O_{\mathcal{F}}^{(n)}:=\{\omega_{\mathfrak{A}}\mid \mathfrak{A}\in \Phi^{(n+1)},\ \mathfrak{A}$$
 — допустима $\},$ $O_{\mathcal{F},\Pi}^{(n)}:=\{\omega_{\mathfrak{A}}\mid \mathfrak{A}\in \Phi_{\Pi}^{(n+1)},\ \mathfrak{A}$ — допустима $\}.$

Положим $O_{\mathcal{F}} := \bigcup_{n\geqslant 0} O_{\mathcal{F}}^{(n)}$ — множество всех операций на $T_{\mathcal{F}}, O_{\mathcal{F},\Pi} := \bigcup_{n\geqslant 0} O_{\mathcal{F},\Pi}^{(n)}$ — множество *примитивно позитивных* операций на $T_{\mathcal{F}}$.

Аргумент x_i операции $\omega(x_1,\ldots,x_n)$ будем называть существенным, если найдутся такие термы $t_1,\ldots,t_{i-1},t,s,t_{i+1},\ldots,t_n$, что значения $\omega(t_1,\ldots,t_{i-1},t,t_{i+1},\ldots,t_n)$ и $\omega(t_1,\ldots,t_{i-1},s,t_{i+1},\ldots,t_n)$ либо определены и не совпадают, либо одно значение определено, а другое не определено. Далее будем рассматривать операции с точностью до добавления и изъятия несущественных переменных. Когда не оговорено противное, будем предполагать, что операции из $O_{\mathcal{F}}$ не имеют несущественных переменных.

Пару $\langle T_{\mathcal{F}}(\mathcal{U}); \Omega \rangle$, где $\Omega \subseteq O_{\mathcal{F}}$, будем называть алгеброй термов с универсумом $T_{\mathcal{F}}(\mathcal{U})$ и множеством операций Ω . Примерами таких алгебр являются:

- 1) Алгебра \mathcal{F} -слов [3] с универсумом $T_{\mathcal{F}}$ и множеством операций \mathcal{F} . Каждая операция $f:(t_1,\ldots,t_n)\mapsto f(t_1,\ldots,t_n),\ f\in\mathcal{F}^{(n)},$ задается формулой $y=f(x_1,\ldots,x_n).$
- 2) Функции k-значной логики [9], для которых функциональными символами $\mathcal F$ являются константные символы из $E_k=\{0,1,\dots,k-1\}$ и операциями $O_{\mathcal F}$ выступают функции k-значной логики P_k . Каждая функция $f\in P_k^n$ задается формулой

$$\bigwedge_{(\sigma_1,\ldots,\sigma_n)\in E_k^n} \Big(\big((x_1=\sigma_1) \wedge \ldots \wedge (x_n=\sigma_n) \big) \to \big(y=f(\sigma_1,\ldots,\sigma_n) \big) \Big),$$

в которой логическая связка \to задаёт импликацию и выражается через \wedge и \neg .

- 3) Классическое исчисление высказываний [7] с операцией modus ponens, для которого множество тавтологий Th является подмножеством $T_{\{\land,\lor,\neg,\to\}}(\mathcal{U})$ и операция modus ponens задается формулой $(x_1 \to y) = x_2$.
- 4) Пропозициональные исчисления [12, 2], для которых множество тавтологий Th является подмножеством $T_{\mathcal{F}}(\mathcal{U})$, где $\mathcal{F} \subseteq P_2$, и $O_{\mathcal{F}}$ это схемные операции вида

$$\frac{t_1,\ldots,t_m}{t_0}$$
,

где $t_i \in T_{\mathcal{F}}(\{z_1,\ldots,z_n\}),\ i=0,1,\ldots,m$. Каждая такая операция задается формулой

$$\exists z_1,\ldots,z_n\big((x_1=t_1)\wedge\ldots\wedge(x_n=t_n)\wedge(y=t_0)\big).$$

В данной работе будут рассмотрены не произвольные алгебры термов $\langle T_{\mathcal{F}}(\mathcal{U}); \Omega \rangle$, а лишь алгебры вида $\langle T_{\mathcal{F}}; \Omega \rangle$, которые будем называть алгебрами замкнутых термов.

Пусть $L\subseteq T_{\mathcal{F}}$ некоторое множество термов, тогда будем говорить, что терм $t\in T_{\mathcal{F}}$ выводим из термов множества L с помощью операций Ω , если t можно за конечное число шагов получить из L с помощью операций Ω . Выводимость терма t из множества термов L с помощью операций Ω будем обозначать через $L \vdash_{\Omega} t$. Множество всех выводимых из L термов обозначим через

$$[L]_{\Omega} := \{ t \in T_{\mathcal{F}} \mid L \vdash_{\Omega} t \}.$$

Нетрудно заметить, что $[L]_{\Omega}$ является алгебраическим оператором замыкания на множестве термов $T_{\mathcal{F}}$. По аналогии, для произвольного $L' \subseteq T_{\mathcal{F}}$ будем говорить, что L' выводимо из L с помощью операций Ω , и писать $L \vdash_{\Omega} L'$, если $L' \subseteq [L]_{\Omega}$.

Определим массовую проблему ВЫВОДИМОСТЬ:

Дано: $\Omega \subseteq O_{\mathcal{F}}, |\Omega| < \infty, L \subseteq T_{\mathcal{F}}, |L| < \infty, t \in T_{\mathcal{F}};$

Boπpoc: $L \vdash_{\Omega} t$?

Теорема 1. Если \mathcal{F} содержит функциональные символы арности 0 и 2, то найдутся такие конечные множества $\Omega \subseteq O_{\mathcal{F},\Pi}^{(1)}$ и $L \subseteq T_{\mathcal{F}}$, что множество $[L]_{\Omega}$ является неразрешимым.

Как следствие из теоремы 1 получаем, что в такой общей формулировке проблема ВЫВОДИМОСТЬ алгоритмически неразрешима.

Следствие 1. Проблема ВЫВОДИМОСТЬ алгоритмически неразрешима.

Следует отметить, что алгоритмическая неразрешимость проблемы ВЫВОДИМОСТЬ для алгебр термов со свободными переменными следует из неразрешимости классического исчисления высказываний [13, 6, 1]. Теорема 1 показывает, что это верно и для класса алгебр замкнутых термов. В данной работе будут рассмотрены два частных случая этой проблемы.

Для конечного множества операций $\Omega \subseteq O_{\mathcal{F}}$ определим массовую проблему ВЫВОДИМОСТЬ(Ω):

Дано: $L \subseteq T_{\mathcal{F}}, |L| < \infty, t \in T_{\mathcal{F}};$

Вопрос: $L \vdash_{\Omega} t$?

Для конечного множества операций $\Omega \subseteq O_{\mathcal{F}}$ и конечного множества термов $L \subseteq T_{\mathcal{F}}$ определим массовую проблему ВЫВОДИ-МОСТЬ (Ω, L) :

Дано: $t \in T_{\mathcal{F}}$; Вопрос: $L \vdash_{\Omega} t$?

Напомним, что множество операций $\Omega \subseteq O_{\mathcal{F}}$ называется клоном, если

- 1) Ω содержит все проекции $e_i^{(n)}$ $(i=1,\ldots,n,\ n\in\mathbb{N}),$ определенные равенством $e_i^{(n)}(x_1,\ldots,x_n)=x_i;$
- 2) для любых $\omega \in \Omega^{(n)}$, $\omega_1, \ldots, \omega_n \in \Omega^{(m)}$ $(n, m \in \mathbb{N})$ операция $\omega' := \omega(\omega_1, \ldots, \omega_n)$ (суперпозиция операции ω и операций $\omega_1, \ldots, \omega_n$), определенная как $\omega'(t_1, \ldots, t_m) = \omega(\omega_1(t_1, \ldots, t_m), \ldots, \omega_n(t_1, \ldots, t_m))$ на любом наборе $(t_1, \ldots, t_m) \in T_T^m$, также принадлежит Ω .

Стоит отметить, что каждая проекция $e_i^{(n)}$ $(i=1,\ldots,n,\ n\in\mathbb{N})$ принадлежит $O_{\mathcal{F}}$, поскольку задается формулой $x_i=y$, и каждая суперпозиция $\omega(\omega_1,\ldots,\omega_n)$ также принадлежит $O_{\mathcal{F}}$, поскольку задается формулой

$$\exists y_1, \dots, y_n \big(\mathfrak{A}_1(x_1, \dots, x_m, y_1) \wedge \dots \wedge \mathfrak{A}_n(x_1, \dots, x_m, y_n) \wedge \mathfrak{B}(y_1, \dots, y_n, y) \big),$$

где $\mathfrak{A}_1,\ldots,\mathfrak{A}_n,\mathfrak{B}$ — формулы, задающие операции ω_1,\ldots,ω_n и ω , соответственно.

Для $\Omega \subseteq O_{\mathcal{F}}$ обозначим через $[\Omega]$ наименьший клон в $O_{\mathcal{F}}$, содержащий Ω . Таким образом определенный оператор замыкания $[\cdot]$ обладает следующим свойством.

Лемма 1. $Ecnu \ \Omega \subseteq O_{\mathcal{F},\Pi}, \ mo \ [\Omega] \subseteq O_{\mathcal{F},\Pi}.$

Для конечного множества операций $\Omega \subseteq O_{\mathcal{F}}$ определим массовую проблему ВЫРАЗИМОСТЬ (Ω) :

Дано: $\omega \in O_{\mathcal{F}}$; Вопрос: $\omega \in [\Omega]$?

Лемма 2. Если $\Omega \subseteq O_{\mathcal{F},\Pi}$ и ВЫРАЗИМОСТЬ (Ω) алгоритмически разрешима, то ВЫВОДИМОСТЬ (Ω) также алгоритмически разрешима.

Определим понятие автомата над термам. Существует несколько равносильных определений автомата над термами [4, 11]. Рассмотрим одно из них, в котором (конечный) автомат над термами $T_{\mathcal{F}}$ определяется как $\mathcal{A} := \langle \mathcal{F}, Q, \varphi, Q_F \rangle$, где Q — (конечное) множество состояний автомата, $Q_F \subseteq Q$ — множество заключительных состояний, φ — функция переходов, сопоставляющая каждому элементу $f^{(n)} \in \mathcal{F}$ функцию $\varphi_f : Q^n \to Q$. Множество всех конечных автоматов над термами $T_{\mathcal{F}}$ обозначим через $A_{\mathcal{F}}$.

Отображение $\varphi \colon \mathcal{F} \to P_Q$, где P_Q — множество функций на Q, естественным образом расширяется до отображения $\varphi \colon T_{\mathcal{F}}(\{x_1,\ldots,x_n\}) \to P_Q^{(n)}$ $(n \in \mathbb{N})$ по правилу

$$\varphi_{f(t_1,\ldots,t_m)} = \varphi_f(\varphi_{t_1},\ldots,\varphi_{t_m})$$

для любых $f \in \mathcal{F}^{(m)}$, $t_1, \ldots, t_m \in T_{\mathcal{F}}(\{x_1, \ldots, x_n\})$, $m \in \mathbb{N} \cup \{0\}$, и $\varphi_{x_i}(x_1, \ldots, x_n) = x_i, \ i = 1, \ldots, n$. Легко заметить, что для любого $t \in T_{\mathcal{F}}$ функция φ_t является константой из Q.

Будем говорить, что автомат \mathcal{A} принимает терм $t \in T_{\mathcal{F}}$, если $\varphi_t \in Q_F$. Таким образом, каждый автомат $\mathcal{A} \in A_{\mathcal{F}}$ определяет одноместный предикат $\rho_{\mathcal{A}}$ на множестве термов $T_{\mathcal{F}}$, заданный множеством термов, принимаемых автоматом \mathcal{A} .

Аналогично можно определить n-местные $(n \ge 2)$ предикаты на $T_{\mathcal{F}}$, заданными конечными автоматами. Для этого закодируем наборы $(t_1,\ldots,t_n)\in T^n_{\mathcal{F}}$ термами $T_{\mathcal{F}'}$ над некоторым конечным множеством функциональных символов \mathcal{F}' [11]. Положим $\mathcal{F}':=(\mathcal{F}\cup\{\bot\})^n$, где \bot — это новый символ арности 0, не принадлежащий \mathcal{F} . Арность функционального символа $f_1^{(k_1)}\ldots f_n^{(k_n)}$ есть $\max(k_1,\ldots,k_n)$.

Определим по индукции понятие кода пары термов $t,s\in T_{\mathcal{F}}.$ Пусть $t=f(t_1,\ldots,t_p)$ и $s=g(s_1,\ldots,s_q);$ положим

$$[t,s] := fg([t_1,s_1],\ldots,[t_q,s_q],[t_{q+1},\perp],\ldots,[t_p,\perp]),$$

если $p \geqslant q$, и

$$[t,s] := fg([t_1,s_1],\ldots,[t_p,s_p],[\bot,s_{p+1}],\ldots,[\bot,s_q]),$$

если $n \leq a$

Для более общего случая кодом термов $t_1,\ldots,t_n\in T_{\mathcal{F}},$ где $t_i=f_i(t_i^1,\ldots,t_i^{k_i}),\ i=1,\ldots,n,$ будем называть терм

$$[t_1,\ldots,t_n]:=f_1\ldots f_n([t_1^1,\ldots,t_n^1],\ldots,[t_1^m,\ldots,t_n^m]),$$

где m — арность символа $f_1 \dots f_n$ и $t_i^j = \bot$ для $j > k_i$.

Каждый автомат $\mathcal{A} \in A_{(\mathcal{F} \cup \{\bot\})^n}$ определяет n-местный предикат $\rho_{\mathcal{A}}(x_1,\ldots,x_n)$ на множестве термов $T_{\mathcal{F}}$ $(n \in \mathbb{N})$, заданный условием

$$\rho_{\mathcal{A}}(t_1,\ldots,t_n)=1\leftrightharpoons \mathcal{A}$$
 принимает терм $[t_1,\ldots,t_n]$

для любых $t_1, \ldots, t_n \in T_{\mathcal{F}}$. Обозначим множество всех таких n-местных предикатов на множестве $T_{\mathcal{F}}$ через

$$R_{\mathcal{F}}^{(n)} := \{ \rho_{\mathcal{A}} \mid \mathcal{A} \in A_{(\mathcal{F} \cup \{\bot\})^n} \}.$$

Положим $R_{\mathcal{F}}:=\cup_{n\geqslant 0}R_{\mathcal{F}}^{(n)}$ — множество всех предикатов на $T_{\mathcal{F}}.$

Будем говорить, что операция $\omega \in O_{\mathcal{F}}^{(n)}$ сохраняет предикат $\rho \in R_{\mathcal{F}}^{(m)}$, если для любых $\overline{t_1}, \dots, \overline{t_n} \in T_{\mathcal{F}}^m$ выполнено

$$\overline{t_1}, \dots, \overline{t_n} \in \rho \Rightarrow \omega(\overline{t_1}, \dots, \overline{t_n}) \in \rho$$

где $\overline{t_i}=(t_i^1,\dots,t_i^m),\ i=1,\dots,n,$ и $\omega(\overline{t_1},\dots,\overline{t_n})=(\omega(t_1^1,\dots,t_n^1),\dots,$ $\omega(t_1^m,\dots,t_n^m)).$ По определению считаем, что пустой предикат сохраняет любая функция.

Лемма 3. Существует алгоритм, который по любой паре $(\omega, \rho) \in O_{\mathcal{F}} \times R_{\mathcal{F}}$ выдает ответ «да», если ω сохраняет ρ , и «нет» — иначе.

Отношение сохранения операцией предиката определяет соответствие Галуа между операциями $O_{\mathcal{F}}$ и предикатами $R_{\mathcal{F}}$ на множестве термов $T_{\mathcal{F}}$. Соответствие Галуа задается парой отображений:

Inv:
$$2^{O_{\mathcal{F}}} \to 2^{R_{\mathcal{F}}}$$
, $\Omega \mapsto \{\rho \in R_{\mathcal{F}} \mid (\forall \omega \in \Omega) \ \omega \text{ сохраняет } \rho\}$, Pol: $2^{R_{\mathcal{F}}} \to 2^{O_{\mathcal{F}}}$, $\Gamma \mapsto \{\omega \in O_{\mathcal{F}} \mid (\forall \rho \in \Gamma) \ \omega \text{ сохраняет } \rho\}$,

где 2^{M} — множество всех подмножеств множества M.

Теорема 2. Если $\Omega \subseteq O_{\mathcal{F}}$ и $[\Omega] = \text{Pol Inv } \Omega$, то ВЫРАЗИМОСТЬ (Ω) алгоритмически разрешима.

Как следствие из теоремы 2 и леммы 2 имеем.

Следствие 2. Если $\Omega \subseteq O_{\mathcal{F},\Pi}$ и $[\Omega] = \text{Pol Inv } \Omega$, то ВЫВОДИ-МОСТЬ (Ω) алгоритмически разрешима.

Данное утверждение можно усилить, если воспользоваться понятием локального замыкания множества операций [15, 16]. Локальным замыканием множества операций $\Omega \subseteq O_{\mathcal{F}}$ будем называть множество

Loc
$$\Omega := \{ \omega \in O_{\mathcal{F}}^{(n)} \mid \forall L \subseteq T_{\mathcal{F}}^{(n)}, \ |L| < \infty,$$

$$\exists \omega' \in \Omega^{(n)} : \ \omega|_{L} = \omega'|_{L}; \ n \in \mathbb{N} \}.$$

Это множество всех n-арных операций $(n \in \mathbb{N})$ таких, что для любого конечного множества термов $L \subseteq T_{\mathcal{F}}^{(n)}$ найдется операция из Ω , совпадающая с ω на L.

Теорема 3. Если $\Omega \subseteq O_{\mathcal{F},\Pi}$ и $\operatorname{Loc}[\Omega] = \operatorname{PolInv}\Omega$, то ВЫВОДИ-МОСТЬ (Ω) алгоритмически разрешима.

Для произвольного множества термов $L\subseteq T_{\mathcal{F}}$ обозначим через $R_{\mathcal{F}}^{(1)}(L):=\{\rho\in R_{\mathcal{F}}^{(1)}\mid L\subseteq \rho\}$ — множество одноместных предикатов, содержащих L. Множество термов $L\subseteq T_{\mathcal{F}}$ назовем автоматноотделимым, если

$$L = \bigcap_{\rho \in R_{\mathcal{F}}^{(1)}(L)} \rho.$$

Теорема 4. Если $\Omega \subseteq O_{\mathcal{F}}$, $L \subseteq T_{\mathcal{F}}$ и $[L]_{\Omega}$ автоматно-отделимо, то проблема ВЫВОДИМОСТЬ (Ω, L) алгоритмически разрешима.

Следует отметить, что понятие автоматной отделимости является обобщением конечной интерпретации [5], которое принято называть также финитной регулярной истинностной матрицей [6] или оценкой [7]. Из теоремы 4, в частности, следует известный результат для классического исчисления высказываний, что каждое конечно-аппроксимируемое исчисления разрешимо [6].

2. Доказательство утверждений

2.1. Доказательство теоремы 1

Без ограничения общности будем считать, что \mathcal{F} состоит только из функциональных символов $1^{(0)}$, $\cdot^{(2)}$, где 1 — функциональный символ арности 0, а \cdot — функциональный символ арности 2. При этом

терм $\cdot(x_1, x_2)$ будем обозначать через $(x_1 \cdot x_2)$ или просто через x_1x_2 . Расстановку скобок в терме

$$(x_1 \cdot (x_2 \cdot \ldots \cdot (x_{n-1} \cdot x_n)))$$

будем называть стандартной. Далее будем опускать некоторые скобки, считая, что терм $x_1 \cdot \dots \cdot x_n$ имеет стандартную расстановку скобок.

Для доказательства неразрешимости множества термов воспользуемся понятием нормальной системы Поста [17]. Для этого рассмотрим частный случай таких систем — однородные системы продукций Поста или «Тэг» системы.

Однородные системы продукций Поста

Однородная система продукции Поста — это тройка $\Sigma = \langle A, V, l \rangle$, где $A = \{a_1, \dots, a_n\}$ — конечный алфавит; V — множество пар вида (α, β) , где $\alpha, \beta \in A^+$ и $|\alpha| = l$, A^+ — множество непустых слов в алфавите A; $l \geqslant 1$ — натуральное число. Будем предполагать, что для любых (α, β) , $(\alpha', \beta') \in V$ слова α и α' различны.

Будем говорить, что система Σ применима к слову ξ , если существует пара $(\alpha,\beta)\in V$, для которой слово α является началом слова ξ , то есть $\xi=\alpha\gamma$, в противном случае — не применима. Результатом применения Σ к слову $\xi=\alpha\gamma$, где $(\alpha,\beta)\in V$, будем называть слово $\gamma\beta$. Факт применимости Σ будем обозначать через $\alpha\gamma \xrightarrow{\Sigma} \gamma\beta$.

Будем называть слово $\beta \in A^+$ Σ -продукцией слова $\alpha \in A^+$ и писать $\alpha \stackrel{\Sigma}{\Longrightarrow} \beta$, если существует конечная последовательность слов $\gamma_1,\ldots,\gamma_s\in A^*$ такая, что $\gamma_1=\alpha,\gamma_s=\beta$ и $\gamma_i\stackrel{\Sigma}{\Longrightarrow}\gamma_{i+1},\ i=1,\ldots,s-1$. Также будем предполагать, что $\alpha \stackrel{\Sigma}{\Longrightarrow} \alpha$. Множество всех Σ -продукций слова α обозначим через $[\alpha]_{\Sigma}$.

Теорема 5 (Минский М. Л. [14]). Существует однородная система продукций Поста Σ и такое слово η , для которых множество продукций $[\eta]_{\Sigma}$ неразрешимо.

Кодирование слов термами

Определим своего рода кодирование, сопоставив каждой букве a_i алфавита A некоторый терм $\overline{a_i} \in T_{\{1, \dots\}}$ однозначным образом. Положим $t_0 := x_1$ и $t_k := t_{k-1} \cdot t'_{k-1}$ при $k \geqslant 1$, где

$$t'_k := t_k \{ x_1 \leftarrow x_{2^k+1}, \dots, x_{2^k} \leftarrow x_{2^{k+1}} \},$$

где $t\{x_1 \leftarrow s_1, \ldots, x_n \leftarrow s_n\}$ означает подстановку в терме t вместо переменных x_1, \ldots, x_n термов s_1, \ldots, s_n . Таким образом, терм t_k $(k \ge 0)$ представляет собой полное дерево высоты k, листьям которого приписаны различные переменные x_1, \ldots, x_{2^k} .

Кодом буквы $a_i \in A$ будем считать терм

$$\overline{a_i} := t_{\lceil \log_2 n \rceil} \{ x_1 \leftarrow 1, \dots, x_i \leftarrow 11, \dots, x_{2^{\lceil \log_2 n \rceil}} \leftarrow 1 \}, \ i = 1, \dots, n.$$

Несложно убедиться, что для любых $a,b\in A$ код \overline{a} не является подтермом кода \overline{b} .

Далее, произвольному непустому слову $\alpha = a_{i_1} \dots a_{i_l}$ над алфавитом A сопоставим класс всех термов вида $\overline{a_{i_1}} \dots \overline{a_{i_l}}$, с произвольной расстановкой скобок между элементами $\overline{a_{i_1}}, \dots, \overline{a_{i_l}}$. Произвольного представителя этого класса обозначим через $\overline{\alpha}$, которого будем называть кодом слова α . Таким образом, каждый представитель одного класса кодирует одно и тоже слово. Также положим

$$\overrightarrow{\alpha} := (\overline{a_{i_1}} \cdot (\dots \cdot (\overline{a_{i_{l-1}}} \cdot \overline{a_{i_l}}))),$$

$$\overleftarrow{\alpha} := (((\overline{a_{i_1}} \cdot \overline{a_{i_2}}) \cdot \dots) \cdot \overline{a_{i_l}}),$$

$$\overrightarrow{\alpha x} := (\overline{a_{i_1}} \cdot (\dots \cdot (\overline{a_{i_l}} \cdot x))).$$

Построением множеств Ω и L

Пусть $\Sigma = \langle A,V,l \rangle$ — однородная система продукций Поста и $\eta \in A^*$ — непустое слово. Положим $L_\eta := \{\overrightarrow{\eta}\}$ и Ω_Σ — это множество операций

$$\begin{array}{lll} \omega_{\alpha}^{1}(x)=y &\leftrightharpoons \exists z\big(x=\overrightarrow{\alpha z}\wedge y=z\cdot\overrightarrow{\beta}\big), \ (\alpha,\beta)\in V,\\ \omega_{\alpha}^{2}(x)=y &\leftrightharpoons x=\overrightarrow{\alpha}\wedge y=\overrightarrow{\beta}, \ (\alpha,\beta)\in V,\\ \omega_{a}^{3}(x)=y &\leftrightharpoons \exists u,v,z\big(x=((u\cdot(\overline{a}\cdot v))\cdot z)\wedge y=(((u\cdot\overline{a})\cdot v)\cdot z)\big), \ a\in A,\\ \omega_{a}^{4}(x)=y &\leftrightharpoons \exists u,v\big(x=((u\cdot\overline{a})\cdot v)\wedge y=(u\cdot(\overline{a}\cdot v))\big), \ a\in A. \end{array}$$

Свойства алгебры $(T_{\{1,\cdot\}},\Omega_\Sigma)$

Лемма 4.
$$Ecлu \ \xi, \beta, \zeta \in A^+, \ mo \ (\overleftarrow{\xi} \cdot \overrightarrow{\beta}) \cdot \overrightarrow{\zeta} \vdash_{\Omega_{\Sigma}} \overleftarrow{\xi\beta} \cdot \overrightarrow{\zeta}$$
.

Доказательство. Доказывать будем индукцией по длине слова β . Если $|\beta|=1$, то терм $(\overleftarrow{\xi}\cdot \overrightarrow{\beta})\cdot \overleftarrow{\zeta}$ совпадает с $\overleftarrow{\xi\beta}\cdot \overleftarrow{\zeta}$. Пусть теперь $\beta=a\delta$, где $|\delta|\geqslant 1$; с помощью операции ω_a^3 из терма $(\overleftarrow{\xi}\cdot \overrightarrow{\beta})\cdot \overleftarrow{\zeta}$ выводим терм $(\overleftarrow{\xi}a\cdot \overleftarrow{\delta})\cdot \overleftarrow{\zeta}$. По индуктивному предположению $(\overleftarrow{\xi}a\cdot \overrightarrow{\delta})\cdot \overrightarrow{\zeta}$ $\vdash_{\Omega_\Sigma} \overleftarrow{\xi\beta}\cdot \overleftarrow{\zeta}$. Лемма доказана.

Следствие 3. $Ecnu\ \beta,\zeta\in A^+,\ mo\ \overrightarrow{\beta}\cdot \overrightarrow{\zeta}\vdash_{\Omega_\Sigma} \overleftarrow{\beta}\cdot \overrightarrow{\zeta}$.

Лемма 5. $Ecnu \beta, \zeta \in A^+, mo \stackrel{\leftarrow}{\beta} \cdot \stackrel{\rightarrow}{\zeta} \vdash_{\Omega_{\Sigma}} \stackrel{\rightarrow}{\beta \zeta}.$

Доказательство. Доказывать будем индукцией по длине слова β . Если $|\beta|=1$, то терм $\overleftarrow{\beta}\cdot \overrightarrow{\zeta}$ совпадает с $\overrightarrow{\beta}\overleftarrow{\zeta}$. Пусть $\beta=\delta a$, где $|\delta|\geqslant 1$; с помощью операции ω_a^4 из терма $\overleftarrow{\delta}\cdot \overleftarrow{\alpha}\overleftarrow{\zeta}\vdash_{\Omega_\Sigma} \overrightarrow{\beta}\overleftarrow{\zeta}$. Лемма доказана.

Следствие 4. $\mathit{Ecnu}\ \beta, \zeta \in A^+,\ mo\ \overrightarrow{\beta}\cdot \overrightarrow{\zeta} \vdash_{\Omega_\Sigma} \overrightarrow{\beta\zeta}.$

Лемма 6. $Ecnu \xi \xrightarrow{\Sigma} \zeta$, $mo \overrightarrow{\xi} \vdash_{\Omega_{\Sigma}} \overrightarrow{\zeta}$.

Доказательство. Поскольку Σ применима к ξ , то $\xi = \alpha \gamma$, $|\alpha| = l$, и найдется такое $\beta \in A^+$, что $(\alpha, \beta) \in V$. Если γ — пустое, то $\zeta = \beta$ и с помощью операции ω_α^2 из терма $\overrightarrow{\xi}$ выводим терм $\overrightarrow{\zeta}$. Если же $|\gamma| > 0$, то $\zeta = \gamma \beta$ и выводима цепочка:

$$\overrightarrow{\alpha \gamma} \vdash_{\Omega_{\Sigma}} \overrightarrow{\gamma} \cdot \overrightarrow{\beta} \vdash_{\Omega_{\Sigma}} \overrightarrow{\gamma \beta}$$

где первый вывод есть применение операции ω_{α}^{1} , а второй — применение следствия 4. Лемма доказана.

Следствие 5. $Ecnu \ \xi \stackrel{\Sigma}{\Rightarrow} \zeta, \ mo \ \overrightarrow{\xi} \vdash_{\Omega_{\Sigma}} \overrightarrow{\zeta}.$

Лемма 7. $Ecnu \ \overline{\xi} \vdash_{\Omega_{\Sigma}} \overline{\zeta}, mo \ \xi \stackrel{\Sigma}{\Rightarrow} \zeta.$

Доказательство. Для $L \subseteq T_{\{1,\cdot\}}$ обозначим через $\langle L \rangle$ множество, содержащее L и все термы, получающие из L однократным применением операций Ω_{Σ} . Положим $L_0 = \{\overline{\xi}\}, \ L_{k+1} = \langle L_k \rangle, \ k \geqslant 0$. Так как $\overline{\xi} \vdash_{\Omega_{\Sigma}} \overline{\zeta}$, то найдется $k \geqslant 0$, для которого $\overline{\zeta} \in L_k$ и $\overline{\zeta} \not\in L_{k'}$ при k' < k.

Докажем лемму индукцией по k. Если k=0, то $\overline{\zeta}=\overline{\xi}$ и $\xi \stackrel{\Sigma}{\Rightarrow} \zeta$. Пусть утверждение леммы верно для всех k' < k, докажем его для k.

Если $\overline{\zeta} = \omega_{\alpha}^{1}(t)$ для некоторого $t \in L_{k-1}$, то найдется пара $(\alpha, \beta) \in V$, для которой $t = \overrightarrow{\alpha \gamma}$ и $\overline{\zeta} = \overrightarrow{\gamma} \cdot \overrightarrow{\beta}$. Значит $\zeta = \gamma \beta$ и $\alpha \gamma \xrightarrow{\Sigma} \zeta$. По индуктивному предположению $\xi \stackrel{\Sigma}{\Rightarrow} \alpha \gamma$, следовательно, $\xi \stackrel{\Sigma}{\Rightarrow} \zeta$.

Если $\overline{\zeta} = \omega_{\alpha}^2(t)$ для некоторого $t \in L_{k-1}$, то найдется пара $(\alpha, \beta) \in V$, для которой $t = \overrightarrow{\alpha}$ и $\overline{\zeta} = \overrightarrow{\beta}$. По индуктивному предположению $\xi \stackrel{\Sigma}{\Rightarrow} \alpha$, следовательно, $\xi \stackrel{\Sigma}{\Rightarrow} \zeta$.

Если $\overline{\zeta} = \omega_{\alpha}^{3}(t)$ для некоторого $t \in L_{k-1}$, то $\overline{\zeta} = ((t_{1} \cdot \overline{a}) \cdot t_{2}) \cdot t_{3}$, $a \in A$, $t_{1}, t_{2}, t_{3} \in T_{\{1,\cdot\}}$. По выбору способа кодирования термы $t_{1} \cdot \overline{a}$, $(t_{1} \cdot \overline{a}) \cdot t_{2}$, $((t_{1} \cdot \overline{a}) \cdot t_{2}) \cdot t_{3}$ и подтермы в \overline{a} не могут быть кодами букв алфавита A, поэтому термы t_{1}, t_{2}, t_{3} являются кодами подслов $\zeta_{1}, \zeta_{2}, \zeta_{3}$ слова ζ , то есть ζ представимо в виде $\zeta_{1}a\zeta_{2}\zeta_{3}$. Значит, терм $t = (t_{1} \cdot (\overline{a} \cdot t_{2})) \cdot t_{3}$ также является кодом слова ζ и по индуктивному предположению $\xi \stackrel{\Sigma}{\Rightarrow} \zeta$.

Если $\overline{\zeta} = \omega_{\alpha}^4(t)$ для некоторого $t \in L_{k-1}$, то $\overline{\zeta} = t_1 \cdot (\overline{a} \cdot t_2)$, $a \in A$, $t_1, t_2 \in T_{\{1,\cdot\}}$. Аналогичными рассуждениями можно показать, что термы t_1, t_2 являются кодами подслов ζ_1, ζ_2 слова $\zeta = \zeta_1 a \zeta_2$. Значит, терм $t = (t_1 \cdot \overline{a}) \cdot t_2$ также является кодом слова ζ и по индуктивному предположению $\xi \stackrel{\Sigma}{\Rightarrow} \zeta$.

Лемма доказана.

Доказательство теоремы 1

По следствию 5 код любой продукции из $[\eta]_{\Sigma}$ выводим из множества L_{η} с помощью операций Ω_{Σ} . По лемме 7 любой код слова из $[L_{\eta}]_{\Omega_{\Sigma}}$ является кодом продукции из $[\eta]_{\Sigma}$. Поэтому, если бы множество термов $[L_{\eta}]_{\Omega_{\Sigma}}$ было разрешимо, то разрешимым было бы и множество продукций $[\eta]_{\Sigma}$. По теореме 5 существует такие Σ и η , для которых множество продукций $[\eta]_{\Sigma}$ неразрешимо. Следовательно, множество термов $[L_{\eta}]_{\Omega_{\Sigma}}$ также неразрешимо. Теорема доказана.

2.2. Доказательство леммы 1

Поскольку каждая проекция $e_i^{(n)}$ $(i=1,\ldots,n,\ n\in\mathbb{N})$ принадлежит $O_{\mathcal{F},\Pi}$, то достаточно показать, что для любых операций $\omega\in O_{\mathcal{F},\Pi}^{(n)}$ и $\omega_1,\ldots,\omega_n\in O_{\mathcal{F},\Pi}^{(m)}$ $(n,m\in\mathbb{N})$ их суперпозиция $\omega(\omega_1,\ldots,\omega_n)$ также принадлежит $O_{\mathcal{F},\Pi}$.

В самом деле, если операции $\omega_1, \ldots, \omega_n, \omega$ задаются допустимыми формулами $\mathfrak{A}_1, \ldots, \mathfrak{A}_n, \mathfrak{B} \in \Phi_{\Pi}$, соответственно, то суперпозиция $\omega(\omega_1, \ldots, \omega_n)$ задается формулой

$$\mathfrak{C} := \exists y_1, \dots, y_n \big(\mathfrak{A}_1(x_1, \dots, x_m, y_1) \wedge \dots \\ \dots \wedge \mathfrak{A}_n(x_1, \dots, x_m, y_n) \wedge \mathfrak{B}(y_1, \dots, y_n, y) \big).$$

Поскольку формулы $\mathfrak{A}_1, \dots, \mathfrak{A}_n, \mathfrak{B}$ не содержат символа \neg , то и \mathfrak{C} не содержит этого символа. Следовательно, $\mathfrak{C} \in \Phi_{\Pi}$. Лемма 1 доказана.

2.3. Доказательство леммы 2

Примитивно позитивные формулы вида

$$\exists z_1,\ldots,z_m (x_{i_1}=t_1\wedge\ldots x_{i_k}=t_k),$$

где $t_j \in T_{\mathcal{F}}(\{x_1,\ldots,x_n,z_1,\ldots,z_m\} \setminus \{x_{i_1},\ldots,x_{i_k}\}), \ 1 \leqslant j \leqslant k \ 1 \leqslant k \leqslant n,$ будем называть формулами стандартного вида.

Лемма 8. Любую примитивно позитивную формулу можно привести к стандартному виду.

Доказательство. Пусть $\mathfrak{A} \in \Phi_{\Pi}^{(n)}$ — примитивно позитивная формула со свободными переменными x_1, \dots, x_n . Поскольку \mathfrak{A} не содержит отрицаний, то эквивалентными преобразованиями можно сместить все кванторы существования в левый край формулы и тем самым получить формулу вида

$$\exists z_1, \dots, z_m \, (t_1 = s_1 \wedge \dots t_k = s_k)$$

для некоторого $k \geqslant 1$, где $t_i, s_i \in T_{\mathcal{F}}(\{x_1, \dots, x_n, z_1, \dots, z_m\}), 1 \leqslant i \leqslant k$.

По лемме об унифицирующей подстановке [5] существует такая подстановка

$$\sigma: \{x_1, \ldots, x_n, z_1, \ldots, z_m\} \to T(\mathcal{F}, \{x_1, \ldots, x_n, z_1, \ldots, z_m\}),$$

что $t_i\sigma\equiv s_i\sigma$ для каждого $i=1,\ldots,k$ и любая подстановка σ' с тем же свойством разлагается в произведение $\sigma'=\sigma\sigma''$, для некоторой подстановки σ'' . Без ограничения общности будем считать, что

$$\sigma = \{x_1 \leftarrow t_1, \ldots, x_p \leftarrow t_p, z_1 \leftarrow s_1, \ldots, z_q \leftarrow s_q\},\$$

где $t_i, s_j \in T(\mathcal{F}, \{x_{p+1}, \dots, x_n, z_{q+1}, \dots, z_m\}), \ i=1,\dots,p, \ j=1,\dots,q.$ Несложно убедиться, что формула $\mathfrak A$ эквивалентна формуле

$$\exists z_1, \ldots, z_m (x_1 = t_1 \wedge \ldots \wedge x_p = t_p),$$

которая имеет стандартный вид. Лемма доказана.

На множестве наборов термов $T^n_{\mathfrak{F}}(\mathcal{U})$, длины $n \ (n \geqslant 1)$ определим отношением частичного порядка \leqslant . Для двух наборов (t_1,\ldots,t_n) , $(s_1,\ldots,s_n)\in T^n_{\mathfrak{F}}(\mathcal{U})$ положим $(t_1,\ldots,t_n)\leqslant (s_1,\ldots,s_n)$ всякий раз, когда найдется такая подстановка $\sigma\colon \mathcal{U}\to T^n_{\mathfrak{F}}(\mathcal{U})$, что термы σt_i и s_i совпадают для каждого $i=1,\ldots,n$.

Каждая примитивно позитивная формула стандартного вида

$$\exists z_1,\ldots,z_m (x_1=t_1\wedge\ldots\wedge x_k=t_k)$$

определяет n-местный предикат $\rho_{\overline{t}}$ на множестве термов $T_{\mathfrak{F}}$, заданный условием

$$\rho_{\overline{t}}(s_1,\ldots,s_n) = 1 \rightleftharpoons \overline{t} \leqslant (s_1,\ldots,s_n),$$

где $\overline{t}=(t_1,\ldots,t_k,x_{k+1},\ldots,x_n)\in T^n_{\mathfrak{F}}(\{x_{k+1},\ldots,x_n,z_1,\ldots,z_m\})$. И, наоборот, каждый набор $(t_1,\ldots,t_n)\in T^n_{\mathfrak{F}}(\{x_1,\ldots,x_n,z_1,\ldots,z_m\})$ определяет примитивно позитивную формулу вида

$$\exists z_1, \ldots, z_m (x_1 = t_1 \wedge \ldots \wedge x_n = t_n).$$

Лемма 9. Если $L \subseteq T_{\mathcal{F}}, |L| < \infty \ u \ t \in T_{\mathcal{F}}, \ mo \ |\Omega_{\Pi}(L,t)| < \infty.$

Доказательство. Рассмотрим произвольную операцию $\omega \in \Omega_{\Pi}(L,t)$ и пусть она задается формулой $\mathfrak{A} \in \Phi_{\Pi}^{(n+1)}$ со свободными переменными x_1, \ldots, x_n, y . По лемме 8 можно считать, что формула \mathfrak{A} имеет стандартный вид и определяет предикат $\rho_{\overline{s}}$, где $\overline{s} \in T_{\mathcal{F}}^{n+1}(\mathcal{U}), \ i = 1, \ldots, k$. Так как $\omega \in \Omega_{\Pi}(L,t)$, то найдутся такие термы $t_1, \ldots, t_n \in L$, что $\omega(t_1, \ldots, t_n) = t$. Поэтому $\overline{s} \leqslant (t_1, \ldots, t_n, t)$.

Таким образом, каждая операция $\omega \in \Omega_{\Pi}(L,t)$ задается набором термов \overline{s} , для которого найдутся такие $t_1,\ldots,t_n\in L$, что $\overline{s}\leqslant (t_1,\ldots,t_n,t)$. Поскольку наборов $\overline{s}\in T^{n+1}_{\mathcal{F}}(\mathcal{U})$, удовлетворяющих условию $\overline{s}\leqslant (t_1,\ldots,t_n,t)$, конечное число (с точностью до переименования переменных), то операций из $\Omega_{\Pi}(L,t)$ также конечное число. Лемма доказана.

Доказательство леммы 2

Пусть $\Omega \subseteq O_{\mathcal{F},\Pi}$ — конечное множество примитивно-позитивных операций. Покажем, что для любого конечного множества термов $L \subseteq T_{\mathcal{F}}$ и терма $t \in T_{\mathcal{F}}$ выполнено включение $t \in [L]_{\Omega}$ тогда и только тогда, когда $\Omega_{\Pi}(L,t) \cap [\Omega] \neq \varnothing$.

Если $t \in [L]_{\Omega}$, то для некоторой операции $\omega \in [\Omega] \cap O_{\mathcal{F}}^{(n)}$ найдутся такие термы $t_1, \ldots, t_n \in L$, что $\omega(t_1, \ldots, t_n) = t$. Поэтому $\omega \in \Omega_{\Pi}(L, t)$.

Если $\omega \in \Omega_{\Pi}(L,t) \cap [\Omega]$, то по определению $\Omega_{\Pi}(L,t)$ найдутся такие термы $t_1,\ldots,t_n \in L$, что $\omega(t_1,\ldots,t_n)=t$. Так как $\omega \in [\Omega]$, то $t \in [L]_{\Omega}$.

Предположим, что проблема ВЫРАЗИМОСТЬ(Ω) алгоритмически разрешима. Опишем алгоритм, решающий проблему ВЫВОДИМОСТЬ(Ω). Получая на вход конечное множестве термов L и терм t, он последовательно пробегает множество операций $\Omega_{\Pi}(L,t)$, которое конечно по лемме 9. Если очередная операция ω принадлежит [Ω], то выдается ответ «да», терм $t \in [L]_{\Omega}$, иначе выдается ответ «нет», терм $t \notin [L]_{\Omega}$. Лемма 2 доказана.

2.4. Доказательство леммы 3

Рассмотрим автомат $\mathcal{A} = \langle \mathcal{F}, Q, \varphi, Q_F \rangle \in A_{(\mathcal{F} \cup \bot)^m}, m \geqslant 1$. Будем говорить, что предикат $\rho \subseteq Q^n$ представляет формулу $\mathfrak{A} \in \Phi^{(n)}$ посредством автомата \mathcal{A} , если для любых $q_1, \ldots, q_n \in Q$ $\rho(q_1, \ldots, q_n) = 1$ тогда и только тогда, когда найдутся такие наборы термов $(t_1^1, \ldots, t_1^m), \ldots, (t_n^1, \ldots, t_n^m) \in T_{\mathcal{F}}^m$, что $\varphi_{[t_1^1, \ldots, t_i^m]} = q_i$, $i = 1, \ldots, n$, и $\rho_{\mathfrak{A}}(t_1^j, \ldots, t_n^j) = 1, j = 1, \ldots, m$.

Лемма 10. Для любого автомата $\mathcal{A} \in A_{(\mathcal{F} \cup \bot)^m}$, $m \geqslant 1$, и формулы $\mathfrak{A} \in \Phi$ существует предикат ρ , представляющий формулу \mathfrak{A} посредством автомата \mathcal{A} .

Доказательство. Пусть $\mathcal{A} = \langle \mathcal{F}, Q, \varphi, Q_F \rangle$. Доказывать будем индукцией по глубине формулы \mathfrak{A} .

Если \mathfrak{A} — это формула вида t=s, где $t,s\in T(\mathcal{F},\{x_1,\ldots,x_n\}),$ то по лемме об унифицирующей подстановке [5] существует такая подстановка

$$\sigma \colon \{x_1, \dots, x_n\} \to T(\mathcal{F}, \{x_1, \dots, x_n\}),$$

что $t\sigma \equiv s\sigma$. Без ограничения общности будем считать, что

$$\sigma = \{x_1 \leftarrow s_1, \ldots, x_k \leftarrow s_k\},\$$

где $s_i \in T(\mathcal{F}, \{x_{k+1}, \dots, x_n\}), \ i = 1, \dots, k$. Возьмем в качестве ρ предикат

$$x_1 = \varphi_{[s_1...s_1]}(x_{k+1},...,x_n) \wedge ... \wedge x_k = \varphi_{[s_k...s_k]}(x_{k+1},...,x_n).$$

Покажем, что ρ представляет $\mathfrak A$ посредством $\mathcal A$.

Если для некоторых $q_1,\ldots,q_n\in Q$ выполнено $\rho(q_1,\ldots,q_n)=1$, то $q_i=\varphi_{[s_i\ldots s_i]}(q_{k+1},\ldots,q_n),\ i=1,\ldots,k.$ Можно считать, что в $\mathcal A$ все состояния достижимы [11], поэтому существуют такие термы $[t_{k+1}^1\ldots t_{k+1}^m],\ldots,[t_n^1\ldots t_n^m]\in T_{(\mathcal F\cup\bot)^m},$ что $\varphi_{[t_i^1\ldots t_i^m]}=q_i,\ i=k+1,\ldots,n.$ Положим $\sigma_j=\{x_{k+1}\leftarrow t_{k+1}^j,\ldots,x_n\leftarrow t_n^j\}$ и $t_i^j=s_i\sigma_j,$ $i=1,\ldots,k,\ j=1,\ldots,m.$ Для любого $i=1,\ldots,k$ имеем

$$\varphi_{[t_i^1...t_i^m]} = \varphi_{[s_i...s_i]}(\varphi_{[t_{k+1}^1...t_{k+1}^m]}, \dots, \varphi_{[t_n^1...t_n^m]}) = \varphi_{[s_i...s_i]}(q_{k+1}, \dots, q_n) = q_i.$$

Так как $t\sigma \equiv s\sigma$, то

$$t\{x_1 \leftarrow t_1^j, \ldots, x_n \leftarrow t_n^j\} \equiv s\{x_1 \leftarrow t_1^j, \ldots, x_n \leftarrow t_n^j\}, \ j = 1, \ldots, m.$$
(1)

Следовательно, $\rho_{\mathfrak{A}}(t_1^j,\ldots,t_n^j)=1$ для любого $j=1,\ldots,m$.

Если же для некоторых $q_1,\ldots,q_n\in Q$ нашлись такие наборы термов $(t_1^1,\ldots,t_1^m),\ldots,(t_n^1,\ldots,t_n^m)\in T_{\mathcal{F}}^m$, что $\varphi_{[t_1^1...t_i^m]}=q_i,i=1,\ldots,n,$ и $\rho_{\mathfrak{A}}(t_1^j,\ldots,t_n^j)=1,\ j=1,\ldots,m,$ то выполнено (1). Поэтому для любого $j=1,\ldots,m$ подстановка

$$\widetilde{\sigma_j} = \{x_1 \leftarrow t_1^j, \dots, x_n \leftarrow t_n^j\}$$

является решением уравнения t=s. По лемме об унифицирующей подстановке для каждого $j=1,\ldots,m$ существует такая подстановка σ'_j , что $\widetilde{\sigma_j}=\sigma\sigma'_j$, причем,

$$x_i \widetilde{\sigma_j} = \begin{cases} s_i \sigma_j', & i = 1, \dots, k, \\ x_i \sigma_j', & i = k + 1, \dots, n. \end{cases}$$

Для любого $i = 1, \ldots, k$ имеем

$$q_{i} = \varphi_{[t_{i}^{1},...,t_{i}^{m}]} = \varphi_{[s_{i}\sigma'_{1}...s_{i}\sigma'_{n}]} =$$

$$= \varphi_{[s_{i}...s_{i}]}(\varphi_{[t_{k+1}^{1},...,t_{k+1}^{m}]},...,\varphi_{[t_{n}^{1},...,t_{n}^{m}]}) = \varphi_{[s_{i}...s_{i}]}(q_{k+1},...,q_{n}).$$

Следовательно, $\rho(q_1, \dots, q_n) = 1$.

Пусть \mathfrak{A} — это формула вида $\mathfrak{B} \wedge \mathfrak{C}$, либо $\neg \mathfrak{B}$, либо $\exists x \mathfrak{B}(x)$. По предположению индукции существуют предикаты ρ_1 и ρ_2 , представляющие посредством автомата \mathcal{A} формулы \mathfrak{B} и \mathfrak{C} соответственно. Несложно убедиться, что предикаты $\rho_1 \wedge \rho_2$, $\overline{\rho_1}$ и $\exists x \rho_1(x)$ представляют посредством автомата \mathcal{A} формулы $\mathfrak{B} \wedge \mathfrak{C}$, $\neg \mathfrak{B}$ и $\exists x \mathfrak{B}(x)$ соответственно. Лемма доказана.

Доказательство леммы 3

Рассмотрим произвольную пару $(\omega, \rho) \in O_{\mathcal{F}} \times R_{\mathcal{F}}$. Пусть $\omega \in O_{\mathcal{F}}^{(n)}$ и $\rho \in R_{\mathcal{F}}^{(m)}$. По определению найдется такая допустимая формула $\mathfrak{A} \in \Phi^{(n+1)}$ и такой автомат $\mathcal{A} = \langle \mathcal{F}, Q, \varphi, Q_F \rangle \in A_{(\mathcal{F} \cup \bot)^m}$, что $\omega = \omega_{\mathfrak{A}}$ и $\rho = \rho_{\mathcal{A}}$. По лемме 10 существует (n+1)-местный предикат ρ' , представляющий формулу \mathfrak{A} посредством автомата \mathcal{A} . Положим

$$\widetilde{\rho}(y) := \exists x_1, \dots, x_n \in Q_F(\rho'(x_1, \dots, x_n, y)).$$

Если $\widetilde{\rho}\subseteq Q_F$, то для любых $(t_1^1,\ldots,t_1^m),\ldots,(t_n^1,\ldots,t_n^m)\in T_{\mathcal{F}}^m$, если $\varphi_{[t_1^1\ldots t_i^m]}\in Q_F,\ i=1,\ldots,n$, то

$$\varphi_{[\omega(t_1^1,\ldots,t_n^1)\ldots\omega(t_1^m,\ldots,t_n^m)]}\in Q_F.$$

Следовательно, ω сохраняет ρ .

Пусть нашлось такое $q_0 \not\in Q_F$, что $\widetilde{\rho}(q_0)=1$. По определению предиката $\widetilde{\rho}$ найдутся такие $q_1,\ldots,q_n\in Q_F$, что $\rho'(q_1,\ldots,q_n,q_0)=1$. Поскольку ρ' представляет формулу $\mathfrak A$ посредством автомата $\mathcal A$, то найдутся такие наборы термов $(t_0^1,\ldots,t_0^m),(t_1^1,\ldots,t_1^m),\ldots,(t_n^1,\ldots,t_n^m)\in T_{\mathcal F}^m$, что $\varphi_{[t_i^1,\ldots t_i^m]}=q_i,i=0,1,\ldots,n$, и $\rho_{\mathfrak A}(t_1^j,\ldots,t_n^j,t_0^j)=1,\ j=1,\ldots,m$. Отсюда, $\omega(t_1^j,\ldots,t_n^j)=t_0^j$ для каждого $j=1,\ldots,m$. Так как $\varphi_{[t_i^1,\ldots t_i^m]}\in Q_F,\ i=1,\ldots,n$, и $\varphi_{[t_0^1,\ldots t_0^m]}\not\in Q_F$, то ω не сохраняет ρ .

Таким образом, операция ω сохраняет предикат ρ тогда и только тогда, когда $\widetilde{\rho} \subseteq Q_F$. Поскольку множества $\widetilde{\rho}$ и Q_F конечны, то переборный алгоритм сможет за конечное число шагов дать ответ «да», если ω сохраняет ρ , и «нет» — иначе. Лемма 3 доказана.

2.5. Доказательство теоремы 2

Пусть $\Omega \subseteq O_{\mathcal{F}}$ — конечное множество операций. Опишем алгоритм, решающий проблему ВЫРАЗИМОСТЬ (Ω) . Получая на вход

операцию ω , он последовательно пробегает перечислимые множества операций $[\Omega]$ и предикатов $R_{\mathcal{F}}$. Если на i-ом шаге алгоритм остановился на паре (ω_i, ρ_i) , то проверяются условия:

- 1) Если $\omega = \omega_i$, то выдается ответ «да», операция $\omega \in [\Omega]$;
- 2) Если все операции из Ω сохраняют ρ_i , а операция ω не сохраняет ρ_i , то выдается ответ «нет», операция $\omega \notin [\Omega]$.

Согласно лемме 3 существует алгоритм, который по любой паре $(\omega,\rho)\in O_{\mathcal{F}}\times R_{\mathcal{F}}$ проверяет, сохраняет ли операция ω предикат ρ . Поскольку $[\Omega]=$ Pol Inv Ω , то для любого предиката $\rho\in R_{\mathcal{F}}$, который сохраняют все операции из Ω , условие $\omega\not\in [\Omega]$ равносильно тому, что ω не сохраняет ρ . Поэтому описанный процесс проверки принадлежности $\omega\in [\Omega]$ остановится за конечное число шагов. Теорема 2 доказана.

2.6. Доказательство теоремы 3

Пусть $\Omega \subseteq O_{\mathcal{F},\Pi}$ — конечное множество примитивно-позитивных операций. Опишем алгоритм, решающий проблему ВЫВОДИ-МОСТЬ (Ω) . Получая на вход конечное множество термов L и терм t, он последовательно пробегает перечислимые множества операций Loc $[\Omega]$ и предикатов $R_{\mathcal{F}}$. Если на i-ом шаге алгоритм остановился на паре (ω_i, ρ_i) , то проверяются условия:

- 1) Если $\omega_i \in \Omega_{\Pi}(L,t)$, то выдается ответ «да», терм $t \in [L]_{\Omega}$;
- 2) Если все операции из Ω сохраняют ρ_i , а все операции из $\Omega_{\Pi}(L,t)$ не сохраняют ρ_i , то выдается ответ «нет», терм $t \notin [L]_{\Omega}$.

Покажем, что условие $\Omega_{\Pi}(L,t) \cap \text{Loc } [\Omega] \neq \emptyset$ влечет за собой включение $t \in [L]_{\Omega}$. В самом деле, если $\omega \in \Omega_{\Pi}(L,t) \cap \text{Loc } [\Omega]$, то существует операция $\omega' \in [\Omega]$, которая совпадает с ω на множестве L. Значит найдутся такие термы $t_1, \ldots, t_n \in L$, что $\omega(t_1, \ldots, t_n) = t$. Следовательно, $t \in [L]_{\Omega}$.

По условию теоремы Loc $[\Omega]=$ Pol Inv Ω . Покажем, что для любого предиката $\rho\in R_{\mathcal{F}}$, который сохраняют все операции из Ω , если все операции из $\Omega_{\Pi}(L,t)$ не сохраняют ρ , то $t\not\in [L]_{\Omega}$. Предположим противное, что все операции из $\Omega_{\Pi}(L,t)$ не сохраняют ρ , но $t\in [L]_{\Omega}$. Если $t\in [L]_{\Omega}$, то для некоторой операции $\omega\in [\Omega]\cap O_{\mathcal{F}}^{(n)}$ найдутся

такие термы $t_1, \ldots, t_n \in L$, что $\omega(t_1, \ldots, t_n) = t$. Поэтому $\omega \in \Omega_{\Pi}(L, t)$ и ω сохраняет ρ , что противоречит предположению.

Из леммы 9 следует, что для любого конечного множества термов L и терма t множество операций $\Omega_{\Pi}(L,t)$ конечно. Согласно лемме 3 существует алгоритм, который по любой паре $(\omega,\rho)\in O_{\mathcal{F}}\times R_{\mathcal{F}}$ проверяет, сохраняет ли операция ω предикат ρ . Так как множество Ω конечно, то описанный процесс проверки принадлежности $t\in [L]_{\Omega}$ остановится за конечное число шагов. Теорема 3 доказана.

2.7. Доказательство теоремы 4

Пусть $\Omega \subseteq O_{\mathcal{F}}$ — конечное множество операций и $L \subseteq T_{\mathcal{F}}$ — конечное множество термов из условия теоремы. Последовательность термов

$$t_1, t_2, \ldots, t_{i_1}, \ldots, t_{i_n}, \ldots, t_{i_n}, \ldots$$

будем называть выводом в L, если для любого j>0 терм t_j либо принадлежит L, либо существует такая операция $\omega\in\Omega$, что $t_j=\omega(t_{i_1},\ldots,t_{i_n})$ для некоторых индексов i_1,\ldots,i_n меньших j. Ясно, что максимальный вывод в L содержит все термы из $[L]_{\Omega}$.

Опишем алгоритм, решающий проблему ВЫВОДИМОСТЬ(Ω, L). Получая на вход терм t, он последовательно пробегает множество одноместных предикатов $R_{\mathcal{F}}^{(1)}$ и максимальный вывод в L. Если на i-ом шаге алгоритм остановился на паре (ρ_i, t_i) , то проверяются условия:

- 1) Если $t = t_i$, то выдается ответ «да», терм $t \in [L]_{\Omega}$;
- 2) Если $L \subseteq \rho_i$ и все операции $\omega \in \Omega$ сохраняют предикат ρ_i , но $\rho_i(t) = 0$, то выдается ответ «нет», терм $t \notin [L]_{\Omega}$.

Согласно лемме 3 существует алгоритм, который по любой паре $(\omega, \rho) \in O_{\mathcal{F}} \times R_{\mathcal{F}}$ проверяет, сохраняет ли операция ω предикат ρ . Так как множества Ω и L конечны, то описанный процесс проверки принадлежности $t \in [L]_{\Omega}$ сойдется.

Поскольку для любого $\rho \in R_{\mathcal{F}}^{(1)}$ условие $[L]_{\Omega} \subseteq \rho$ равносильно тому, что $L \subseteq \rho$ и каждая операция $\omega \in \Omega$ сохраняет ρ , то описанный алгоритм решает проблему ВЫВОДИМОСТЬ (Ω, L) . Теорема 4 доказана.

Список литературы

- [1] Боков Г.В. Проблема полноты в исчислении высказываний // Интеллектуальные системы. 2009. Т. 13, вып. 1–4. С. 165–181.
- [2] Боков Г. В. Об алгоритмической неразрешимости проблемы выразимости пропозициональных исчислений // Интеллектуальные системы. 2013. Т. 17, вып. 1–4. С. 271–292.
- [3] Кон П. Универсальная алгебра. М.: Мир, 1968.
- [4] Кудрявцев В. Б., Алешин С. В., Подколзин А. С. Введение в теорию автоматов. М.: Наука, 1985.
- [5] Кудрявцев В. Б., Гасанов Э. Э., Подколзин А. С. Введение в теорию интеллектуальных систем. — М.: Изд-во ф-та ВМиК МГУ, 2006.
- [6] Кузнецов А. В. Неразрешимость общих проблем полноты, разрешимости и эквивалентности для исчислений высказываний // Алгебра и логика. 1963. Т. 2, № 4. С. 47–66.
- [7] Новиков П. С. Элементы математической логики. М.: Наука, 1973.
- [8] Шенфилд Д. Математическая логика. М.: Наука, 1975.
- [9] Яблонский С.В. Введение в дискретную математику. М.: Наука, 1986.
- [10] Börner F. Basics of Galois Connections // Complexity of Constraints, Lecture Notes in Computer Science. — Berlin Heidelberg: Springer, 2008. V. 5250. — P. 38–67.
- [11] Comon H., Dauchet M., Gilleron R., Löding C., Jacquemard F., Lugiez D., Tison S., Tommasi M. Tree Automata Techniques and Applications. 2008. Available on: http://www.grappa.univ-lille3.fr/tata.
- [12] Harrop R. On the existence of finite models and decision procedures // Proceedings of the Cambridge Philosophical Society. 1958. V. 54. P. 1–16.
- [13] Linial S., Post E. L. Recursive unsolvability of the deducibility, Tarski's comleteness, and independence of axioms problems of the propositional calculus // Bulletin of the American Mathematical Society. — 1949. V. 55. — P. 50.

- [14] Minsky M. L. Recursive unsolvability of Post's problem of "tag" and other topics in theory of Turing machines // Annals of Mathematics. — 1961. V. 74. — P. 437-455.
- [15] Pöschel R. A general Galois theory for operations and relations and concrete characterization of related algebraic structures. / Report R-01/80, Zentralinstitut für Mathematik und Mechanik, Akademie der Wissenschaften der DDR. Berlin, 1980.
- [16] Pöschel R. Galois Connections for Operations and Relations // Galois Connections and Applications. Mathematics and Its Applications. Netherlands: Springer, 2004. V. 565. P. 231–258.
- [17] Post E. L. Formal reduction of the general combinatorial decision problem // American Journal of Mathematics. 1943. V. 65. P. 197–215.