Вопросы полноты в классе кусочно-линейных непрерывных функций.

А. Н. Кан

В статье рассматривается класс всех двуместных кусочно-линейных непрерывных функций. Доказывается что данный класс лежит в классе согласованных функций. Найден критерый полноты в этом классе.

Ключевые слова: Класс кусочно-линейных функций, класс кусочно-линейных непрерывных функций, класс согласованных функций, класс финитно-параллельных непрерывных функций, функция Хэвисайда, операции суперпозиции, вектор сигнатуры.

1. Введение.

В настоящей работе рассматривается класс CPL кусочно-линейных непрерывных функций. Данный класс является подклассом PL кусочнолинейных функций. Кусочно-линейные функции были изучены в работе [1]. Был выделен класс PP кусочно-параллельных функций, в котором был найден предполный класс C-финитно-линейных функций ΦL . Был сформулирован критерий полноты в классе кусочно-параллельных функций. В работе [4] был получен критерий полноты в классе кусочно-линейных функций. Были найдены три замкнутых класса: класс финитных функций Φ , класс кусочно-линейных непрерывных функций CPL и класс согласованных функций P. Данные классы образуют критериальную систему в классе кусочно-линейных функций. Каждый из приведенных классов может обладать "хорошими" свойствами, имеющие значение в реализации нейронной сети. Поэтому отдельно изучается класс

кусочно-линейных непрерывных функций. Данный класс был рассмотрен в работе [3]. Оказалось что все кусочно-линейные непрерывные функции зависящие от одной переменной $CPL^{(1)}$ можно получить из функции модуля и линейных функций по операциям суперпозиции. Хотелось бы обобщить результат прошлой работы на все кусочно-линейные непрерывные функции. В настоящей работе была поставлена задача полноты в классе кусочно-линейных непрерывных функций зависящих от двух переменных.

2. Основные понятия и определения.

Определение 1. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется линейной, если найдутся $\overline{a} \in \mathbb{R}^n$ и $c \in \mathbb{R}$, такие что $f(\overline{x}) = \overline{x} * \overline{a} + c$, где под операцией "*" понимается скалярное произведение векторов. Множество всех линейных функций обозначим через L.

Пусть l_i - гиперплоскость, задаваемая уравнением $\overline{x}*\overline{a_i}+c_i=0, a_i\in\mathbb{R}^n\setminus\{\overline{0}\}, c_i\in\mathbb{R}, i=1,..,k$. Для каждой точки $\overline{x}\in\mathbb{R}^n$ рассмотрим вектор $\sigma(\overline{x})=(\sigma_1,..,\sigma_k)$ с компонентами из множества $\{-1,0,1\}, \sigma_i=sgn(\overline{x}*\overline{a_i}+c_i)$, где

$$sgn(b) = egin{cases} -1, & \text{если } b < 0 \\ 0, & \text{если } b = 0 \\ 1, & \text{если } b > 0. \end{cases}$$

Определение 2. Две точки $\overline{x}, \overline{y} \in \mathbb{R}$ эквивалентны относительно гиперплоскостей $l_1, ..., l_k$ тогда и только тогда, когда $\sigma(\overline{x}) = \sigma(\overline{y})$, обозначим это через $\overline{x} \sim \overline{y}$.

Легко проверить, что отношение " \sim " является отношением эквивалентности. Таким образом, пространство \mathbb{R}^n разбивается на классы эквивалентности $R_1,..,R_s$.

Определение 3. Сигнатурой класса R называется вектор $\sigma(R) = \sigma(\overline{x})$, где \overline{x} точка класса R.

Пусть $R_1,...,R_s$ - все классы эквивалентности на которые гиперплоскости $l_1,...,l_k$ разбивают \mathbb{R}^n .

Определение 4. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется кусочно-линейной, если $\forall j \in \{1,..,s\}$ найдутся $b_j \in \mathbb{R}^n$ и $d_j \in \mathbb{R}$, что для всех $\overline{x} \in R_j$ выполняется $f(\overline{x}) = \overline{x} * \overline{b_j} + d_j$. Линейную функцию $\overline{x} * \overline{b_j} + d_j$, реализуемую на множестве R_j , обозначим $f_{R_j}(\overline{x})$. Множество всех кусочно-линейных функций обозначим через PL.

Определение 5. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется кусочно-постоянной, если $\forall j \in \{1,..,s\}$ найдутся $d_j \in \mathbb{R}$, что для всех $\overline{x} \in R_j$ выполняется $f(\overline{x}) = d_j$. Множество всех кусочно-постоянных функций обозначим через PC.

Определение 6. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется кусочно-линейной непрерывной, если $f \in PL$ и непрерывна. Класс всех кусочно-линейных непрерывных функций обозначим через CPL.

Пусть $f: \mathbb{R}^n \Rightarrow \mathbb{R} \in CPL$, тогда выполнятся следующее свойство.

Свойство 1. $\forall R_i, R_j \in \{R_1, ..., R_s\}, \ \sigma(R_i) = (\sigma_1^{R_i}, ..., \sigma_k^{R_i}), \ \sigma(R_j) = (\sigma_1^{R_j}, ..., \sigma_k^{R_j}) \ makux, \ umo$

$$\sum_{p=1}^{k} |\sigma_p^{R_i} - \sigma_p^{R_j}| = 1, \tag{1}$$

имеем

$$f_{R_i}(\overline{x}) = f_{R_j}(\overline{x}), \forall \overline{x} \in R_j.$$
 (2)

В данном случае вектор сигнатуры R_j имеет на один ноль больше, иначе мы бы рассматривали $\overline{x} \in R_i$.

Определение 7. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется согласованной, если $f \in PL$ и $\forall \overline{a}, \overline{b}, \overline{d} \in \mathbb{R}^n, \exists A, B, N \in \mathbb{R}$ такие, что $f(\overline{a} \cdot t + \overline{b}) = f(\overline{a} \cdot t + \overline{d}) + A \cdot h + B \cdot (h-1)$, где h = 0 если t < -N, h = 1 если t > N [4]. Класс всех согласованных функций обозначим P.

Другими словами, функция f принадлежит классу согласованных функций, если на любых двух параллельных прямых в \mathbb{R}^n функция определенная как разность функций на этих прямых, при достаточно большом |t| > N, ведет себя как кусочно-постоянная функция.

3. Задача вложености класса CPL в класс P.

Теорема 1. $CPL \subset P$.

Доказательство.

Докажем что любая функция из класса CPL принадлежит классу P. От противного.

Пусть $f \in CPL$ и пусть $\exists \overline{a}, \overline{b}, \overline{d} \in \mathbb{R}^n$ такие, что $\forall N \in \mathbb{R}_+, f(\overline{a} \cdot t + \overline{b}) - f(\overline{a} \cdot t + \overline{d}) \neq const$, при t > N. Прямые $r_1 = \overline{a} \cdot t + \overline{b}$ и $r_2 = \overline{a} \cdot t + \overline{d}$ задают плоскость p в \mathbb{R}^n . Рассмотрим функцию f на плоскости p и обозначим ее через g(x,y).

$$g(x,y) = f(p) \tag{3}$$

Далее будем рассматривать функции при достаточно большом значении аргумента таком, что область определения функции будет попадать только в один класс эквивалентности.

Пусть функция g(x,y) задается гиперплоскостями (прямыми) $l_1,..,l_k$, которые образуют классы эквивалентности $R_1,..,R_s$. Рассмотрим случаи: 1) $r_1,r_2 \subset R_i$.

$$g(\overline{a} \cdot t + \overline{b}) - g(\overline{a} \cdot t + \overline{d}) = g_{R_i}(\overline{a} \cdot t + \overline{b}) - g_{R_i}(\overline{a} \cdot t + \overline{d}) = A \cdot (a_1 \cdot t + a_2 \cdot t + b) + B - A \cdot (a_1 \cdot t + a_2 \cdot t + d) + B = A \cdot (b - d) = const.$$
(4)

2) $r_1\subset R_i, r_2\subset R_j$, где $R_i\subseteq l\in\{l_1,..,l_k\}, R_j$ — смежен с прямой $l\in l_1,..,l_k$

Это означает что

$$\sum_{1}^{s} |\sigma^{R_i} - \sigma^{R_j}| = 1. \tag{5}$$

а следовательно $g_{R_i}(\overline{x}) = g_{R_i}(\overline{x}), \forall \overline{x} \in R_i$. Тогда

$$g(\overline{a} \cdot t + \overline{b}) - g(\overline{a} \cdot t + \overline{d}) = g_{R_i}(\overline{a} \cdot t + \overline{b}) - g_{R_i}(\overline{a} \cdot t + \overline{d}) = A \cdot (a_1 \cdot t + a_2 \cdot t + b) + B - A \cdot (a_1 \cdot t + a_2 \cdot t + d) + B = A \cdot (b - d) = const.$$
 (6)

3) Последний случай, когда между прямыми r_1 и r_2 проходят несколько прямых $l_{j_1},...,l_{j_m} \in \{l_1,...,l_s\}$ упорядоченных от r_1 к r_2 . Из первого и второго случаев можно показать что функция на прямой r_1 отличается на константу от функции на прямой l_{j_1} , функция на прямой l_{j_1} отличается на константу от функции на прямой l_{j_2} , и т.д. Получаем что функция на прямой r_1 отличается на константу от функции на прямой r_2 .

Во всех трех случаях получаем что разница $g(\overline{a} \cdot t + \overline{b}) - g(\overline{a} \cdot t + \overline{d}) = const$, а следовательно предположение неверно и класс $CPL \subset P$. Неравенство класса CPL и P вытекает из следующего примера. Рассмотрим функцию Хэвисайда $\Theta(x)$.

$$\Theta(x) = \begin{cases} 1, & \text{если } x \ge 0 \\ 0, & \text{если } x < 0 \end{cases}$$

В точке x=0 функция разрывна, следовательно $\Theta(x) \notin CPL$. Но разность функции на двух параллельных прямых, при достаточно большом t, равно нулю.

$$\Theta(a \cdot t + b) - \Theta(a \cdot t + d) = 0. \tag{7}$$

Следовательно $\Theta(x) \in P$.

4. Класс СFР финитно-параллельных функций.

4.1. Замкнутость класса CFP.

Определение 8. Функция $f: \mathbb{R}^n \Rightarrow \mathbb{R}$ называется финитно-парамлельной непрерывной функцией, если $f \in CPL$ и $\forall \overline{a}, \overline{b} \in \mathbb{R}^n, \exists N \in \mathbb{R}$ такое, что $f(\overline{a} \cdot t + \overline{b}) + f(\overline{a} \cdot (-t) + \overline{b}) = const$, для t > N. Множество всех финитно-парамлельных непрерывных функций обозначим через CFP.

Теорема 2. Класс CFP замкнут по операциям суперпозиции.

Доказательство.

Очевидно, что операции отождествления, переименования, добавления и удаления фиктивных переменных сохраняют класс CFP. Это вытекает из определения класса CFP. Докажем что операция подстановки не выводит нас за пределы класса CFP. Рассмотрим функцию $h(x_1,...,x_n)$.

$$h(x_1, ..., x_n) = f(g(x_1, ..., x_n), x_2, ..., x_n)$$
(8)

 $f \in CFP, g \in CFP$.

Рассмотрим функцию h на произвольной прямой и обозначим через h_1 :

$$h_1(t) = h(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n) =$$

$$= f(g(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n), a_2 \cdot t + b_2, ..., a_n \cdot t + b_n) \quad (9)$$

где $a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}$.

Так как $g \in CFP$ то $\exists N \in \mathbb{R}$ такое, что при t > N

$$h_1(t) = h(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n) =$$

$$= f(g(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n), a_2 \cdot t + b_2, ..., a_n \cdot t + b_n) =$$

$$= f(A \cdot t + B, a_2 \cdot t + b_2, ..., a_n \cdot t + b_n) \quad (10)$$

При t < -N

$$h_1(t) = h(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n) =$$

$$= f(g(a_1 \cdot t + b_1, ..., a_n \cdot t + b_n), a_2 \cdot t + b_2, ..., a_n \cdot t + b_n) =$$

$$= f(A \cdot t + D, a_2 \cdot t + b_2, ..., a_n \cdot t + b_n) \quad (11)$$

Так как $f \in CFP \subset P \Rightarrow h_1(t) + h_1(-t) = const.$

Определение 9. Класс A 2-предполный в классе B, если $B^{(2)} \subseteq [A \cup \{f\}]$, где $f \notin A$.

Из теоремы 2 получили, что CFP замкнут в классе CPL. Оказывается данный класс является 2-предполным в классе CPL кусочнолинейных непрерывных функций.

4.2. 2-предполнота класса CFP в классе CPL.

Теорема 3. Пусть $M \subseteq CPL$. $|x| \in [M \cup L] \Leftrightarrow M \not\subseteq CFP$.

Доказательство.

Необходимость вытекает из замкнутости класса CFP.

Докажем что из условия $M \not\subseteq CFP$ следует, что $|x| \in [M \cup L]$. Пусть $M \not\subseteq CFP \Rightarrow \exists f(x_1,..,x_n)$ такая, что $\exists \overline{a}, \overline{b} \in \mathbb{R}^n$, $f(\overline{a} \cdot t + \overline{b}) - f(\overline{a} \cdot (-t) + \overline{b}) \neq const, \forall N \in \mathbb{R}$, при t > N. Пусть $g(t) = f(a_1 \cdot t + b_1,..,a_n \cdot t + b_n)$.

$$g(t) = \begin{cases} a_1 \cdot t + b_1, & \text{если } t \leq c_1 \\ a_2 \cdot t + b_2, & \text{если } c_1 \leq t \leq c_2 \\ & \cdot \\ & \cdot \\ a_l \cdot t + b_l, & \text{если } t \geq c_{l-1} \end{cases}$$

Сначала определим функцию $g_1(t)$.

$$g_1(t) = g(t + c_1) - a_2 \cdot t \tag{12}$$

Мы просто сместили функцию так, чтобы первый изгиб(слева направо) был в точке ноль. При этом отняли линейную функцию $a_2 \cdot t$, чтобы функция $g_1(t)$ на отрезке $[0; c_2 - c_1]$ равнялась нулю. Далее определим функцию h(t).

$$h(t) = \frac{(g(t+c_1) - a_l \cdot t)}{a_1 - a_l} \tag{13}$$

 $a_1 - a_l \neq 0$ (следует из $h(t) \notin CFP$).

Данная функция также имеет первый изгиб в точке ноль. Отняв функцию $a_l \cdot t$ получили что на полуинтервале $[c_l - c_1; \infty)$ функция h(t) = const, при этом на полуинтервале $(\infty, 0], h(t) = t$.

Так, как функция h(t) на полуинтервале $[c_l - c_1; \infty)$ равна константе следует, что функция h(t) ограничена на полуинтервале $[0; \infty)$ и имеет максимум и минимум.

$$max_h = \max_{t \ge 0} \{(h(t))\} \tag{14}$$

$$min_h = \min_{t>0} \{ (h(t)) \}$$
 (15)

Если $min_h = max_h$, положим $min_h = 0$, а $max_h = 1$. Пусть

$$w = \frac{c_2 - c_1}{max_h - min_h}$$

Определим функцию $h_1(t)$.

$$h_1(t) = h(t + min_h) - min_h \tag{16}$$

$$h_1(t)=egin{cases} t,& \text{если }t\leq 0 \ c(t),& \text{если }t>0,$$
где $0\leq c(t)\leq max_h-min_h$

Подставим функцию $h_1(t)$ в функцию $g_1(t)$.

$$h_2(t) = g_1(w \cdot h_1(t)) \tag{17}$$

$$h_2(t) = egin{cases} A \cdot t, & ext{ecли } t \leq 0 \ 0, & ext{ecли } t \geq 0, \end{cases}$$

Из полученной функции $h_2(t)$ легко получить функцию |t|.

$$|t| = \frac{2}{A} \cdot (h_2(t) - \frac{A}{2} \cdot t) \tag{18}$$

Следствие 1. Из теоремы 3 следует, что функию |x| можно получить из произвольной функции не принадлежащей классу CFP. Причем нелинейная глубина и сложность равна двум.

Мы выделяем функцию |x| так, как она является удобной для построения произвольной двуместной кусочно-линейной непрерывной функции.

Обозначим через $CPL^{(1)}$ - все кусочно-линейные непрерывные функции зависящие от одной переменной.

Теорема 4. Пусть $M \subseteq CPL$. $CPL^{(1)} \subseteq [M \cup L] \Leftrightarrow M \not\subseteq CFP$.

Данная теорема была сформулированна и доказана в работе [3]. Из теоремы следует что все одноместные кусочно-линейные непрерывные функции выражаются через модуль и линейные функции. Следующая теорема утверждает что все двуместные кусочно-линейные непрерывные функции также выражаюется через модуль и линейные функции.

Теорема 5. Пусть $M \subseteq CPL$. $CPL^{(2)} \subseteq [M \cup L] \Leftrightarrow M \not\subseteq CFP$.

Доказательство.

Определим следующие функции.

$$min(x,y) = \frac{x+y-|x-y|}{2}$$
 (19)

$$max(x,y) = \frac{x+y+|x-y|}{2}$$
 (20)

 $MM = \{min, max\} \subset CPL.$

Пусть $f \in CPL^{(2)}$ задается гиперплоскостями (прямыми) $l_1,..,l_k$. Данные прямые разбивают плоскость \mathbb{R}^2 на классы эквивалентности $R_1,..,R_s$. Выберем произвольную прямую l_i и рассмотрим все тройки (R_+,R_0,R_-) , где $R_+,R_0,R_-\in\{R_1,..,R_s\}$ смежные с прямой l_i и таких, что вектор сигнатуры для R_+ не имел нуля [1]. Без ограничения общности можно считать что $f_{R_+}=f_{R_0}, \forall (R_+,R_0,R_-)$ (следует из определения класса CPL). Прономеруем все тройки $(R_+,R_0,R_-)_j, j=1..w$ "слева направо" относительно прямой l_i . Рассмотрим первую тройку $(R_+,R_0,R_-)_1$. Положим

$$l_{-i,1} = f_{R_{-}} - f_{R_{0}} \tag{21}$$

$$f_{i,1} = f - m(0, l_{-i,1}) \tag{22}$$

где $m \in MM$. если $l_{-;i,1} > 0$ на R_- , то m = max. В противном случае m = min.

Так как функция $m(0, l_{-;i,1})$ меняет значение только в нижней части функции f относительно прямой l_i , то для тройки $(R_+, R_0, R_-)_1$, выполняется условие

$$f_{R_{+}} - f_{R_{0}} = 0 \text{ и } f_{R_{-}} - f_{R_{0}} = 0.$$
 (23)

Функция $m(0,l_{-;i,1})$ не добавляет новых задающих прямых к уже имеющимся.

Рассмотрим следующую тройку $(R_+,R_0,R_-)_2$. Если данная тройка отделена от предыдущей только одной прямой, то нетрудно видеть, что она тоже удовлетворяет условию (23). Если между текущей и предыдущей тройкой существует несколько разделяющих прямых, то существует класс эквивалентности R_c , который имеет общую границу с классом R_- и имеет одну общую точку с прямой l_i . Тогда положим:

$$l_{-i,2} = f_R - f_{R_0} (24)$$

$$l_{R_c;i,2} = f_{R_c} - f_{R_0} (25)$$

$$f_{i,2} = f_{i,1} - b_{i,2} (26)$$

где $b_{i,2}=m_1(0,m_2(l_{-;i,2},l_{R_c;i,2})),m_1,m_2\in MM$. Если $l_{-;i,1}>0$ на R_- , то $m_1=max,m_2=min$. В противном случае $m_1=min,m_2=max$.

Функция $b_{i,2}$ меняет значение только в нижней части функции f относительно прямой l_i . При этом не меняет значение функции на предыдущих тройках (R_+,R_0,R_-) . Функция $b_{i,2}$ не добавляет новых задающих прямых. Тогда для тройки $(R_+,R_0,R_-)_2,f_{R_+}-f_{R_0}=0$ и $f_{R_-}-f_{R_0}=0$. И так далее $\forall (R_+,R_0,R_-)_j,j=1..w$ получим что $f_{R_+}-f_{R_0}=0$ и $f_{R_-}-f_{R_0}=0$, а следовательно переход через прямую l_i тривиален и функцию $f_{i,w}$ можно задать прямыми $l_1,...,l_{i-1},l_{i+1},...,l_k$.

Повторив эту процедуру для каждой прямой $l_1,..,l_k$ получим что конечная функция задается пустым множеством прямых. Это означает что переход через любую прямую тривиален и конечная функция линейна [1]. Следовательно любую функцию из $CPL^{(2)}$ можно получить из функции |x| и линейных функций используя операции суперпозиции.

Следствие 2. Из теоремы 5 следует, что произвольную двуместную кусочно-линейную непрерывную функцию можно получить из модуля и линейных функций по операциям суперпозиции. Причем нелинейная глубина не превышает четырех, а нелинейныя сложнать асимптотически равна $O(n^2)$, где n это количество задающих прямых.

Список литературы

- [1] Половников В.С. «Об оптимизации структурной реализации нейронных сетей». Диссертация на соискание учёной степени кандидата физико-математических наук. Москва 2007.
- [2] Кудрявцев В.Б., Алешин С.В., Подколзин А.С. «Введение в теорию автоматов». Издательство «Наука», Москва, 1985 г. 1-320 стр.
- [3] Самсонова Н.А. «Класс кусочно-линейных непрерывных функций». Бакалаврская работа. Якутск 2015.
- [4] Кан А.Н. «Вопросы выразимости в классе нейронных функций с памятью». Бакалаврская работа. Ташкент 2014.