
Московский Государственный Университет
имени М.В. Ломоносова

Российская Академия Наук

Международная Академия Технологических Наук

Российская Академия Естественных Наук

Интеллектуальные
Системы.

Теория и приложения

 ТОМ 25 ВЫПУСК 45 * 22002201

МОСКВА

УДК 519.95; 007:159.955
ББК 32.81

ISSN 2411–4448

Издается с 1996 г.∗

Главный редактор: д.ф.-м.н., профессор В.Б. Кудрявцев
Редакционная коллегия:

д.ф.-м.н., проф. А.Е. Андреев (зам. главного редактора)
д.ф.-м.н., проф. Э.Э. Гасанов (зам. главного редактора)
к.ф.-м.н., доц. А.С. Строгалов (зам. главного редактора)
к.ф.-м.н., м.н.с. В.В. Осокин (ответственный секретарь)
д.ф.-м.н., проф. В. В. Александров, д.ф.-м.н., проф. С. В. Алешин, д.ф.-м.н., проф.
Д. Н. Бабин, академик РАН, д.ф.-м.н., проф. Ю. Л. Ершов, академик РАН, д.ф.-м.н.,
проф. Ю. И. Журавлев, д.ф.-м.н., проф. В. Н. Козлов, чл.-корр. РАН, д.ф.-м.н.,
проф. А. В. Михалев, к.ф.-м.н., проф. В. А. Носов, д.ф.-м.н., проф. А. С. Подколзин,
д.т.н., проф. Д. А. Поспелов, д.ф.-м.н., проф. Ю. П. Пытьев, академик РАН, д.т.н.,
проф. А. С. Сигов, д.ф.-м.н., проф. А. В. Чечкин

Международный научный совет журнала:

С. Н. Васильев (Россия), К. Вашик (Германия), В. В. Величенко (Россия),
Я. Деметрович (Венгрия), Г. Килибарда (Сербия), Ж. Кнап (Словения), П. С.
Краснощеков (Россия), А. Нозаки(Япония), В. Н. Редько (Украина), А. П. Рыжов
(Россия) — ученый секретарь совета, А. Саломаа (Финляндия), С. Саксида
(Словения), Б. Тальхайм (Германия), Ш. Ушчумлич (Сербия), Фан Дин Зиеу
(Вьетнам), А. Шайеб(Сирия), Р. Шчепанович (США), Г. Циммерман (Германия)

Секретарь редакции: И. О. Бергер, Е. В. Кузнецова

 В журнале «Интеллектуальные системы. Теория и приложения» публикуются на-
учные достижения в области теории и приложений интеллектуальных систем, новых
информационных технологий и компьютерных наук.

 Издание журнала осуществляется под эгидой МГУ имени М. В. Ломоносова, На-
учного Совета по комплексной проблеме «Кибернетика» РАН, Отделения «Матема-
тическое моделирование технологических процессов» МАТН, Секции «Информатики
и кибернетики» РАЕН.

Учредитель журнала: ООО «Интеллектуальные системы».
Журнал входит в список изданий, включенных ВАК РФ в реестр публикаций

материалов по кандидатским и докторским диссертациям по математике и механике.

Спонсором издания является:
ООО «Два Облака»

Разработка корпоративных информационных систем
http://www.dvaoblaka.ru

Индекс подписки на журнал: 64559 в каталоге НТИ «Роспечать».

Адрес редакции: 119991, Москва, ГСП-1, Ленинские Горы, д. 1, механико-ма-
тематический факультет, комн. 12-01.
Адрес издателя: 115230, Россия, Москва, Хлебозаводский проезд, д. 7, стр. 9,
офис 9. Тел. +7 (495) 939-46-37, e-mail: mail@intsysjournal.org

*) Прежнее название журнала: «Интеллектуальные системы».

©c ООО «Интеллектуальные системы», 2021.

ОГЛАВЛЕНИЕ

Alekseev D.V. Necessary and sufficient conditions for the existence of an image
with a given code . 5

Gasanov E.E. Cellular automata with locators . 15

Vasilev D. I. The one-dimensional closest neighbor search problem solution using
the cellular automata with locators .27

Kalachev G.V. Remarks on the Definition of Cellular Automaton with Locators 45

Sitdikov T. R., Kalachev G. V. The complexity of multilayer d-dimensional circuits
55

Vasilev D. I. The two-dimensional closest neighbor search problem solution using
the cellular automaton with locators . 75

Gasanov E.E., Propazhin A.A. Implementation of key-value databases by cellular
automata with locators . 79

3

4

Necessary and sufficient conditions for the
existence of an image with a given code 1

D.V. Alekseev2

The article introduces an image encoding function which is
invariant with respect to affine transform. The properties of the
encoding funciton are investigated. Necessary and sufficient conditions
are found for a given set of numbers to be a code of nonsingulari image.

Keywords: image code, image encoding, affine equivalence.

Introduction

Recognition tasks often require some image encoding. One of the most
commonly used image codes is just the coordinates of its points. This
encoding is not invariant under geometric transformations, such as
translation, rotation, stretching. Despite that the images obtained by such
transformations are considered to be equivalent. In addition, that encoding
implies fixing some external (to an image) coordinate system.

An affinity invariant image coding was introduced in the papers [4]-[5].
It was shown that the the codes equality of two images is a necessary and
sufficient for them to be affine equivalent. This work introduces a modified
coding function and researches the properties of that coding function. As a
result the necessary and sufficient conditions are derived for an existence of
image producing the given code.

The necessary and sufficient conditions for the existence of a three-
dimensional image with two given planar projections were derived in [2].

In [5] an affine invariant coding function ρ was introduced: ρijk,lmp =
S(4aiajak)
S(4alamap) where S(abc) stands for the area of the triangle abc. Thus, a set of
n points is encoded by (C3

n)2 real numbers. Obviously, this code is redundant.
This work examines the degree of its redundancy. In case of modified encoding
the explicit conditions were derived that an arbitrary list of real numbers is
the code of some image. For the original encoding function, the respective
(implicit) conditions are also given.

In this paper we consider a modified coding function rijk,lmp =
S′(4aiajak)
S′(4alamap) , where S

′ stands for the oriented area, i.e. area with a ± sign
depending on the triangle orientation.

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24,
No. 2, 55-66 (in Russian).

2 Alekseev Dmitriy Vladimirovich — Candidate of Physical and Matematical
Sciences, senior staff scientist, Lomonosov Moscow State University, Faculty of Mechanics
and Mathematics, Problems of Theorecical Cybernetics Lab, e-mail: dvalex@rambler.ru

5

The rest of the paper is organized in the following way: The basic concepts
and notation are introduced in section 1. The properties of the image code
matrix are researched in section 2. The main result is formulated and proven
in section 3. Section 4 is a conclusion.

1. Concepts and notation

Let S′ be the oriented triangle area, i.e. S′(4abc) = S(4abc) for the positive
triangle orientation and S′(4abc) = −S(4abc) for the negative one. The
triangle orientation is considered to be positive when the triangle vertices
are traversed in counterclockwise order and negative otherwise.

Consider the points a1, ..., an on a plane, let call the set A = {a1, ..., an}
an image. An image is called emphdegenerate if all points lie on one straight
line and non-degenerate otherwise. Fix some (Euclidean) coordinate system,
the coordinates of the point ai will be denoted as X(ai) and Y (ai). In the
following, for convenience, individual indices will be denoted by lowercase
Latin letters.

Let call multi-index, a vector comprising three indices. The multi-indices
will be denoted later in the text by lowercase Greek letters α, β, γ, The
multi-index components will be denoted by α = [α(1), α(2), α(3)]. The
triangle 1 with the respective vertex indices will be denoted as 4α =
4aα(1)a alpha(2)aα(3).

Let call multi-indices α and α′ equivalent if and only if the permutation(
α(1) α(2) α(3)
α′(1) α′(2) α′(3)

)
∈ S3 is even and denote it α ' α′. Let call

the multi-index conjugate to α and denote it ᾱ if the permutation(
α(1) α(2) α(3)
ᾱ(1) ᾱ(2) ᾱ(3)

)
∈ S3 is odd. Obviously the triangles with equivalent

multi-indices have the same oriented area, and the triangles with conjugate
multi-indices have areas with the same absolute values and different signs.
Later we do not distinguish between equivalent multi-indices i.e. regard them
as the same multi-index. The same will be applies to the respective triangles.

In total, there are C3
n different unoriented triangles with vertices from

A = {a1, ..., an}, and respectively N = 2 · C3
n oriented ones.

Let enumerate all multi-indices (and the respective triangles): α1, ..., αN .
Let A = {α1, ..., αN} be the set of all multi-indices, and E : αi 7→ i be the
respective enumeration function.

Consider the following set of fractions: rijk,lmp =
S′(4aiajak)
S′(4alamap) . If triangle

4alamap is degenerate, i.e. S′(4alamap) = 0, then use formal notation
1We will also use this notation in the case when the triangle is degenerate.

6

rijk,lmp =∞. Let call the set the code for image {a1, ..., an}. Similar encoding
procedure was proposed in [1].

Definition 1. Consider N × N matrix R = (rij) with the elements rij =

rαi,αj =
S′(4αi)
S′(4αj

. Thus, the elements of the image code are arranged in a
square table, in which the rows and columns are enumerated by multi-indices
(triangles). Let’s call R the image code matrix.

Note 1. Leater the notation r alpha beta = RE(α)E(β) will be, i.e. rows and
columns of the code matrix can also be indexed with multi-indices.

Example 1. Consider a trapezoid a1a2a3a4, with bases a1a2 and a4a3 such
that |a1a2| : |a4a3| = 1 : 2 (see fig. 1). Let enumerate multi-indices as in

a1 a2

a3a4

Fig. 1. Example 1.

table 1. Notice that the last four multi-indices are conjugate to the first
four, so it is sufficient to construct only the part of the image code matrix
corresponding to the first 4 rows and columns. The submatrix is the following:

R4 =

1 1 1/2 1/2
1 1 1/2 1/2
2 2 1 1
2 2 1 1

. The complete code matrix has the following form:

R =

(
R4 −R4

−R4 R4

)
.

2. The properties of a code matrix

1) rαα = 1 или ∞, for all α ∈ A (reflexivity).

2) For all α, β ∈ A such that rαβ 6∈ {0,∞} holds rβα = r
(−1)
αβ (anti-

symmetry2).

3) For all α, β, γ ∈ A such that rαβ, rβγ 6∈ {0,∞} holds rαγ = rαβ · rβγ
(transitivity).

2If rαβ = 0 then rβα = ∞. The converse is generally not true.

7

i αi
1 1, 2, 3
2 1, 2, 4
3 1, 3, 4
4 2, 3, 4
5 1, 3, 2
6 1, 4, 2
7 1, 4, 3
8 2, 4, 3

Table 1. Multi-index table

4) Let π, σ ∈ S3 and α, β ∈ A. Let multi-indices α′ = π(α) and
β′ = σ(β) are the results of permutations π and σ applied to multi-
indices α and β, respectively α′ = [α(π(1)), α(π(2)), α(π(3))] и β′ =
[β(σ(1)), β(σ(2)), β(σ(3))]. Then either rα′β′ = (−1)π · (−1)σ · rαβ , or
rαβ =∞ = rα′β′ (consistency with index permutations).

5) Let i1, i2, i3, i4 ∈ {1, . . . , N}, α1 = [i2, i3, i4], α2 = [i3, i4, i1], α3 =
[i4, i1, i2] и α4 = [i1, i2, i3]. Then for any β ∈ A the equality rα1β +
rα3β = rα2β + rα4β holds3 (additivity).

Properties 1-3 are obvious. Property 4 follows from the change in the
oriented area sign at permutations of vertices. To prove property 5 we
calculate the area of a quadrilateral ai1ai2ai3ai4 (see. fig. 2) by two ways:

S′(ai1ai2ai3ai4) = S′(4ai2ai3ai4) + S′(4ai4ai1ai2) =

= S′(4ai3ai4ai1) + S′(4ai1ai2ai3).

Divide the equality by S′(4β) and get the property 5.
It is natural to ask: are these conditions sufficient for an arbitrary matrix

to be the code of some image? A counterexample below will show that this
is not true.

Let prove the following helper lemma:

Lemma 1. Consider non-degenerate triangle 4β and denote ρα = rαβ,
α ∈ A. Fix an euclidean coordinates on a plane. Then there exist an
affine transform F such that images of ai, i = 1, ..., n i.e. ci = F (ai), have
coordinates X(ci) = ρi,β(3),β(1), Y (ci) = ρi,β(1),β(2).

Proof. Assume without lost of generality that β = [1, 2, 3]. There exists
one and only one affine transform A such that a1 7→ c1(0, 0), a2 7→ c2(1, 0)

3Consider the equation formally, as ∞+∞ = ∞+∞, when the denominator is zero.

8

ai1

ai2

ai3

ai4

Fig. 2. Area Additivity: S′234 + S′124 = S′123 + S′134.

and a3 7→ c3(0, 1). Let (xi, yi) be the coordinates of ci = A(ai), i = 1, 2, 3.
Then S′(4c1c2c3) = 1

2 , S
′(4c3c1ci) = 1

2xi and S′(4c1c2ci) = 1
2yi. Thus

ρ3,1,i = S′(4c3c1ci)
S′(4c1c2c3) = xi and ρ3,1,i = S′(4c3c1ci)

S′(4c1c2c3) = yi. Proof complete.

Corollary 1. Let 4β be a non-degenerate triangle and

ρi,β(1),β(2) = ρj,β(1),β(2) = ρk,β(1),β(2) = ρ∗,

then the points ai, aj and ak are collinear.

Proof. According to lemma 1 there exists an affine transform A such that
A(ai) = ci, A(aj) = cj ,A(aj) = cj so that Y (ci) = Y (cj) = Y (ck) = ρ∗.
Then ci, cj and ck are collinear, therefore ai, aj and ak are collinear too.

Corollary 2. Two non-degenerate images A and B are affine-equivalent if
and only if their code matrices are equal for some points numeration.

Note 2. This corollary is analogous to Theorem 1 from [4] (for another
coding function).

Proof. Oriented areas ratio is conserved under affine transformation so if
A is affine image of B their code matrices are the same.

Let us prove the sufficiency. In a non-degenerate image there exists a non-
degenerate triangle 4β(A) = 4aiajak. As the code matrices are equal then
the respective triangle 4β(B) = 4bibjbk is non-degenerate too. Consider an
image C with points’ coordinates X(ci) = ρi,β(3),β(1), Y (ci) = ρi,β(1),β(2)).
Then by lemma 1 one can construct the affine transforms F1 : A → C и
F2 : B → C. Therefore, A and B are affine equivalent. Proof complete.

Let us show by an example that properties 1–5 are not sufficient for the
existence of an image, with a given code matrix.

9

Example 2. Consider a regular pentagon with vertices a1, ..., a5. Let us
denote the intersection points of the diagonals b1, ..., b5 (see Fig. 3). Place the
points m1,m2 and m3 inside the triangles 4a1a2b4, 4a4a5b2 and 4a3b1b5,
respectively.

Let place unit masses at these points. For a triangle 4aiajak, consider
the total mass of points, located inside it. We will call this mass taken
with the +/− sign depending on the direction of the bypass, pseudo-area
of a triangle triangleaiajak and denote S∗(4aiajak). Obviously, for the
pseudo-area, additivity property holds. Consider the matrix R = (rαβ),
rαβ = S∗(4α)/S∗(4β). Properties 1-3 are fulfilled for it by construction,
property 4 follows from the definition of pseudo-area, and property 5 is due
to its additivity.

Suppose that R is code matrix for some image a′1, ..., a′5. Notice that

r123,123 = r124,123 = r125,123 = 1,

then by corollary 1, the points a′3, a′4 and a′5 are collinear.
Then 4a′3a′4a′5 has zero area, thus r345,123 = 0. But it contradicts to

r345,123 = 1 6= 0.

Note 3. The concept of pseudo-area can be defined more strictly. To do
this, place rice. 3 on the complex plane and interpret points as elements of
C. Consider a meromorphic function f(z) = 1

z−m1
+ 1

z−m2
+ 1

z−m3
, then, one

can define the pseudo-area of a triangle as the following contour integral

S∗(4aiajak) =
1

2πi

∮

4aiajak

f(z)dz.

3. Основные результаты

So, conditions 1-5 are not sufficient for the existence of an image with
the given code matrix. The theorem below answers the question — what
additional conditions can ensure the existence of such an image.

Theorem 1. Let the matrix R satisfy conditions 1-5. Let there exist α, β ∈ A
such that rα,β 6= ∞. Then R to is the code matrix of some non-degenerate
image, if and only if for any i, j = 1, ..., n the equality

ρβ(1),i,j = ρi,β(3),β(1) · ρj,β(1),β(2) − ρj,β(3),β(1) · ρi,β(1),β(2), (1)

is satisfied (here ρα stands for rα,β).

10

a1

a2

a3

a4

a5

b1

b2

b3

b4

b5
m1

m2

m3

Fig. 3. Example 2.

Proof
Necessity. Let β = [1, 2, 3] without loss of generality. Consider an affine
transform A from lemma 1 proof. It maps the points as, s = 1, 2, 3 to c1(0, 0),
c2(1, 0) and c3(0, 1), respectively. Obviously S′(4c1c2c3) = 1

2 . The transform
maps the points ai and aj to ci and cj , with the coordinates X(ci) = ρi,3,1,
Y (ci) = ρi,1,2, and X(cj) = ρj,3,1, Y (cj) = ρj,1,2, respectively. Then oriented
area of 4c1cicj is computed by well-known formula:

S(4c1cicj) =
1

2
det

(
X(ci) Y (ci)
X(cj) Y (cj)

)
=

1

2
(ρi,3,1 · ρj,1,2 − ρj,3,1 · ρi,1,2).

Divide the equality by S′(4c1c2c3) = 1
2 , we have an equality (1).

Sufficiency Let the matrix R satisfies the equality(1). Construct the set
of points {ai : i = 1, ..., N} such that coordinates are X(ai) = ρi,3,1, Y (ai) =
ρi,1,2. Construct the code matrix for that image R∗ = (r∗αβ). Later we will
show that it equals to the given matrix R.

11

Denote ρ∗α = r∗αβ . Let α = [i, j, k], consider an intersection P = {i, j, k}∩
{1, 2, 3}. Actually P is a common indices set for α and β.

Possible cases:

a1(0; 0) a2(1; 0)

a3(0; 1)

ai(ρi,1,2; ρi,3,1)

y

x

Fig. 4. Случай |P | = 2.

• The case |P | = 3. Then α = [j, i, k] is a permutation of 1, 2, 3, i.e. it
is eithe α = β or α = β̄. Then S′(4β) = 1

2 and S′(4β̄) = −1
2 . Thus,

ρ∗β = 1 = ρβ and ρ∗
β̄

= 1 = ρβ̄ .

• The case |P | = 2 and 1 ∈ P (see fig. 4). In other words the triangles
4α and 4b share two common vertices and one of them is the origin
of coordinates. One of i, j, k is not an element of {1, 2, 3}, let it be
i without the lost of generality. If the remaining indices are 1 and 2,
then4 α = γ or α = γ̄, where γ = [1, 2, i]. If α = γ then

S′(4γ) = S′(4aia1a2) =
1

2
Y (ai) =

1

2
ρi,1,2.

Divide the equality by S′(4β) = 1/2 we have ρ∗γ = ργ . If, on the other
hand α = γ̄, then ρ∗α = ρ∗γ̄ = −ρ∗γ = −ργ = ργ̄ . The case P = {1, 3} is
considered the same way.

• The case P = {2, 3} (see fig. 4). In other words the triangles4α and4b

share two common vertices a1 and a2. One of i, j, k is not an element
of {2, 3}, let it be i without the lost of generality.

Then either α = δ or α = δ̄, where δ = [i, 3, 2]. If α = δ then by
property 5 (additivity)

ρ∗α = ρ∗i,3,2 = ρ∗i,3,1 + ρ∗i,1,2 − ρ∗1,2,3 = ρi,3,1 + ρi,1,2 − ρ1,2,3 = ρi,3,2 = ρα.

4Recall that the multi-indices are equivalent with respect to a cyclic permutations.

12

The third equality here follows from ρ∗i,1,2 = ρi,1,2 and ρ∗i,3,1 = ρi,3,1
proved earlier. If, on the other hand α = δ̄, then ρ∗α = ρ∗

δ̄
= −ρ∗δ =

−ρδ = ρδ̄.

a1(0; 0) a2(1; 0)

a3(0; 1)
ai(ρi,1,2; ρi,3,1)

aj(ρj,1,2; ρj,3,1)

y

x

Fig. 5. The case P = {1}.

• The case P = {1} (see fig. 5). In other words the triangles 4α share
4β a single common vertex located in the origin.

Assume that the rest to vertices are ai and aj without the generality
loss. Consider the triangle 4a1aiaj with oriented area

S′(4a1aiaj) =
1

2
·det

(
X(ai) Y (ai)
X(aj) Y (aj)

)
=

1

2
·(ρi,3,1 ·ρj,1,2−ρj,3,1 ·ρi,1,2).

Divide the equality by S′(4a1a2a2) = 1/2, we will have ρ∗1,i,j = ρi,3,1 ·
ρj,1,2 − ρj,3,1 · ρi,1,2 = ρ1,i,j , where the last equality follows from (1).

• The general case: when i, j, k are arbitrary indices. Both ρ and ρ∗ are
additive. So ρ∗i,j,k = ρ∗1,i,j + ρ∗1,j,k − ρ∗1,i,k, that (as in the previous case)
equals to ρ1,i,j + ρ1,j,k − ρ1,i,k = ρi,j,k. Proof complete.

Getting back to the codes using non-oriented area ([4]).

Definition 2. Let call the sign assignment an arbitrary set of numbers
sα,β ∈ {±1}, where α, β ∈ A. Let call the sign assignment consistent if for
all α, β, γ ∈ A the following conditions hold:

1) sαβ · sβγ = sαγ ;

2) sπ(α)σ(β) = (−1)π · (−1)σ · sαβ , π, σ ∈ S3.

Note 4. Obviously, a consistent sign assignment satisfies sαα = 1 and sαβ =
sβα for all α, β ∈ A.

13

Corollary 3. The set of numbers r∗αβ is the code of a non-degenerate image
if and only if there exists a consistent sign assignment sα,β, such that for
rαβ = sαβ · r∗αβ the conditions 1–5 and (1) hold.

Proof
Necessity Just set sα,β = 1 if the triangles 4α and 4β have the same

orientation. Then apply theorem 1.
Sufficiency Construct an image with code matrix R = ((rαβ)) by theorem

1. Then take r∗αβ = |rαβ|.

4. Conclusion

The main result of this paper completely describe the set of non-degenerate
images codes. The future plans are to build similar conditions for other coding
functions, e.g., projective equivalence preserving coding functions or for 3-D
affine equivalence preserving.

References
[1] Агниашвили П.Г., “Однозначность восстановления изображения по его коду

в n-мерном случае”, Интеллектуальные системы, 15:1–4 (2011), 293–332.
[2] Алексеев Д.В., “К вопросу о восстановлении трехмерного тела по его плос-

ким проекциям”, Интеллектуальные системы. Теория и приложения, 21:4
(2017), 66–85.

[3] Козлов В.Н., “Доказательность и эвристика при распознавании визуальных
образов”, Интеллектуальные системы, 14:1–4 (2010), 35–52.

[4] Козлов В.Н., Элементы математической теории зрительного восприя-
тия, Изд–во ЦПИ при мех.–мат. ф–те МГУ, Москва, 2001, 128 с.

[5] Козлов В.Н., “О кодировании дискретных фигур”, Дискретная математи-
ка, 8:6 (1996), 57–61.

[6] Kozlov V.N., “Image Coding and Recognition and Some Problems of Stereo-
vision”, Pattern Recognition and Image Analysis, 7:4 (1997), 448–466.

14

Cellular automata with locators 1

E.E. Gasanov2

This article introduces a new mathematical object called a
cellular automaton with locators. It was created by implementing
new functionality for an automaton to broadcast broadcasting signals
and to receive summarized broadcasting signal of all elementary
automata. This article highlights several problems which solution is
greatly simplified by using cellular automata with locators instead of
traditional cellular automata.

Keywords: cellular automata, homogeneous structures, firing squad
problem, motion picture design, constructing the shortest path.

1. Introduction

Cellular automata (other names: self-reproducing automata and homogeneous
structures) are discrete mathematical models of a wide class of real systems
along with the processes taking place in them.

Theory of self-reproducing automata was introduced by John von
Neumann[1, 2] to describe the processes self-reproduction in biology and
technology. His model was further developed and the term “Cellular
automaton” as it described below was used by A. Burks [3], E. Moore [4],
V. B. Kudryavtsev, A. S. Podkolzin, A. A. Bolotov [5] and other researchers.

Cellular automaton is a mathematical object with discrete space and
time. Its every position in space represented by a single cell, and each moment
in time represented by discrete time step or generation. The state of each
spatial cell is determined by very simple rules of interaction. These rules
prescribe changes in the state of each cell in the next time step in response
to the current state of neighboring cells. Moreover, for different cells, the
rules for changing states may be different.

If we choose a finite automaton as a transformer of information standing
in a cell of space, the same one for all cells, then we come to the concept
of a homogeneous structure. In this case, the cellular automaton is an
infinite automaton circuit constructed as follows. Consider the k-dimensional
Euclidean space. We divide it into hypercubes with a unit edge, the edges of
which are parallel to the coordinate axes. In each hypercube we put the same
finite automaton V with m inputs and one output. We branch the output of

1Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24, No.
2, 121-133 (in Russian).

2Gasanov Elyar Eldarovich — professor, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent Systems,
e-mail: el_gasanov@gmail.com.

15

the automaton and connect it with the inputs of its neighbors in the same way
for all hypercubes in space. We get an infinite homogeneous way arranged
automaton scheme, which is called a cellular automaton. The sequence of
states of individual automata V , containing the states of all automata of
the circuit, form the state of the cellular automaton. The sequence of states
of a cellular automaton arising from the synchronous operation of all its
individual automata is called the functioning of a cellular automaton.

Cellular automata are a discrete mathematical model of a wide class
of real systems along with processes occurring in them, such as physical
media in which thermal and wave phenomena are realized, chemical solutions
with reactions in them, biological tissues in which metabolism occurs,
and technical control schemes processing mechanical and electrical signals,
computational circuits, etc.

If we set the initial states of the automata, then in the circuit the
states of the automata start to change in the way determined by the laws
of the functioning of automata and the relationships between them. The
phenomenon of a global change in these states is the main object of study in
the theory of cellular automata.

This article introduces the generalization of a cellular automaton, which
is proposed to be called a cellular automaton with locators.

One of the serious limitations of cellular automata is the limitedness of
the neighborhood pattern, i.e. each automaton can see a certain number of its
neighbors, and thus signals in cellular automata propagate relatively slowly.
It is proposed to provide cellular automata with the ability to transmit some
signals to all elementary automata at the same time, which will overcome
the locality property.

Here we can recall the model of an incompressible fluid, in which the
signals also instantly propagate throughout the entire volume. A similar
picture is observed in quantum mechanics and in quantum cellular automata
[6], when a change in the state of one automaton causes a change in the state
of all automata “entangled” with it. In the work [7], the concept of nonlocal
cellular automata is introduced. In this paper, nonlocality means that for each
elementary automaton, the set of its neighbors is chosen randomly, and thus,
elementary automata that are far apart from each other can be neighboring.

In real life, a person, when he wants to transmit information not only to
visible neighbors, he can take advantage of such techniques as the supply of
light signals using signal flares. An even more common method is the use of
radio and television broadcasts.

Here, we also introduce the concept of broadcasting. Each elementary
automaton is considered to be able to broadcast some signal from the
finite alphabet on the air. Elements of the alphabet form a finite additive
commutative semigroup, and the air itself is a potentially infinite adder

16

of signals of elementary automata, where the defining operation of this
semigroup acts as a sum. At the next clock, each elementary automaton
receives a total signal from the air and changes its state according to the
signal. In nature, such an adder is air that sums all the radio signals in a
natural way, and in fact each of the receivers gets the same signal at the
input, and only then it extracts the necessary component from the general
signal.

With the help of this principle, one can implement a new type of
integrated circuits that use some substrate as an adder, onto which all
elementary automata will dump some switching or emergency signals.

Introduction of broadcasting concept and the ability to transmit signals
instantly at any distance allows one elementary automaton to control the
behavior of another elementary automaton arbitrarily far from it. We
consider cellular automata with locators that can receive signals from certain
directions. In other words, each elementary automaton has several locators
directed in different directions, and it can use these locators to receive signals
from the very directions.

This article introduces a formal model of cellular automata with locators.
The solution of several tranditional problems and new challenges using
standard cellular automata is given. Then, it is shown that the same problems
can be solved much easier using cellular automata with locators.

2. The concept of cellular automaton with locators

We introduce the concept of a cellular automaton with locators based on the
definition of a cellular automaton from [8].

By a solid angle in Rk we mean the union of all the rays in the space Rk
emanating from a given point (vertex of an angle) and intersecting some
hypersurface in Rk. We assume that a solid angle does not contain its vertex.
In particular, in this paper we consider two degenerate cases: the full solid
angle coinciding with Rk without the vertex of the angle, which we denote
by Ω, and solid angles equal to one ray. If a solid angle is a ray, we denote it
by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

σ = (Zk, En, V, Eq,+, L, ϕ, ψ)

where Zk is the set of k-dimensional vectors with integer coordinates,
En = {0, 1, . . . , n − 1}, V = (α1, . . . , αh−1) is an ordered set of pairwise
different nonzero vectors from Zk, Eq = {0, 1, . . . , q−1}, + is a commutative
semigroup operation defined on Eq, L = (ν1, . . . , νm) is an ordered set of
pairwise different solid angles in Rk with a vertex at the origin, ϕ : Ehn×Emq →

17

En is a function depending on the variables x0, x1, . . . , xh−1, z1, . . . , zm such
that ϕ(0, . . . , 0) = 0, ψ : Ehn × Emq → Eq is a function that depends on the
variables x0, x1, . . . , xh−1, z1, . . . , zm. Here the variables x0, x1, . . . , xh−1 take
values from En and the variables z1, . . . , zm take values from Eq. Elements
of the set Zk are called cells of the cellular automaton σ; elements of the
set En are called cell states of the cellular automaton σ; the set V is called
the neighborhood pattern of the cellular automaton σ; elements of the set Eq
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton σ; the function ϕ is called the local transition function of
the automaton σ; the function ψ is called the broadcasting function of the
automaton σ. The state 0 is interpreted as quiescent state and the condition
ϕ(0, . . . , 0) = 0 is interpreted as a condition for maintaining the quiescent
state.

Here we need to introduce an ordering of the neighborhood pattern V
and the locator pattern L in order to establish a one-to-one correspondence
between vectors from V and solid angles from L and variables x0,
x1, . . . , xh−1, z1, . . . , zm of the local transition function ϕ and the
broadcasting function ψ respectively. We can make this correspondence
more explicit if we index the variables of the functions ϕ and ψ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ϕ and the broadcasting function ψ depend on the variables x0,
xα1 , . . . , xαh−1

, zν1 , . . . , zνm , where the index of the first variable is the zero
vector 0 = (0, . . . , 0) ∈ Zk. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the quiescent of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid
angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k = 2, n = 2, q = 2,
V = {(−1, 0), (1, 0)}, and L = {Ω, (0, 1)}, then a local transition function
may look like this: ϕ = x−1,0&zΩ ∨ x1,0&z0,1.

If α ∈ Zk, ν is a solid angle with vertex at the origin, then we denote by
ν(α) the solid angle obtained by translation of the angle ν to the point α.

If α ∈ Zk is a cell of a cellular automaton with locators σ, then the set
V (α) = {α, α + α1, . . . , α + αh−1} is called the neighborhood of the cell α,
and elements of the set L(α) = {ν1(α), . . . , νm(αm)} are called locators of
the cell α.

A state of a cellular automaton with locators σ is a pair (e, f), where e is
an arbitrary function from the set Zk to the set Eq, called broadcast state, f

18

is an arbitrary function from the set Zk to the set En and called distribution
of states of the cellular automaton with locators σ. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set En and some signal from the set
Eq to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by Σ.

If α ∈ Zk and (e, f) is a state of a cellular automaton with locators σ,
then the value e(α) is called the signal of the cell α, defined by the state (e, f),
and the value f(α) is the state of the cell α, determined by the state (e, f).
For each i ∈ {1, . . . ,m} the value

si(α) =
∑

β∈νi(α)∩Zk

e(β) (1)

we call the value of the locator νi, determined by the state (e, f). Here, the
semigroup operation + defined on Eq is used to sum signals.

On the set Σ we define the global transition function Φ of a cellular
automaton with locators σ, putting Φ(e, f) = (e′, f ′), where (e, f), (e′, f ′) ∈
Σ and for any cell α ∈ Zk the following identities hold

f ′(α) = ϕ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)), (2)

e′(α) = ψ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)). (3)

A meaningful interpretation of the mapping Φ is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ψ and ϕ in the same way for all cells.

By the behavior of a cellular automaton with locators σ we call a sequence
(e0, f0), (e1, f1), (e2, f2), . . . of states such that the equation (ei+1, fi+1) =
Φ(ei, fi) holds for all i = 0, 1, 2, The state (ei, fi) is called the state of
the cellular automaton with locators σ at the time i, and (e0, f0) is also called
the initial state of the cellular automaton with locators σ.

A state of a cellular automaton is called a configuration if only a finite
number of cells are in a state other than 0 and the signals of all the cells are
zero. The set of configurations is denoted by Σ′.

If a certain state of a cellular automaton is specified, then cells that are
in a state other than 0 are called active.

Furher, we demonstrate several problems for cellular automata and show
how their solutions are significantly simplified in case of using cellular
automata with locators.

19

3. A firing squad problem

A firing squad problem was first proposed by J. Mayhill in 1957 and published
(with a solution) in 1968 by F. Moore [9].

In this problem, we consider a one-dimensional cellular automaton on 1.
The neighborhood pattern is V = {−1, 1}, i.e. each cell has two neighbors
left and right. The set of states have at least three states: 0 — quiescent state,
1 — soldier in initial state, 2 — fire. There is a restriction on the transition
function that a soldier in the initial state, having neighbors of such soldiers,
does not change the state, i.e. ϕ(1, 1, 1) = 1. The initial configuration is a
continuous segment of r cells in state 1 (soldiers), and all other cells are in
quiescent state 0. It is necessary that at some point in time all active cells
switch to the state 2 at the same time (fired).

The standard solution to the above problem contains two waves of states
propagating through a number of soldiers, one of which moves three times
faster than the other one. The faster wave is reflected from the far edge of the
row and meets the slower one in the center. After that, two waves are divided
into four waves, moving in different directions from the center. The process
continues, each time doubling the number of waves, until the length of the
segments of the row becomes equal to 1. At this moment, all the soldiers
shoot. This solution requires 3r time units for r soldiers.

The cellular automaton with the locators σ0, which solves the firing
squad problem, has the following form σ0 = (1, E3, V = {−1, 1}, E2,∨, L =
{Ω}, ϕ, ψ), where ∨ is the disjunction taken as the determining operation on
broadcasting function ψ takes the value 1 only for the leftmost soldier in the
initial state, i.e. ψ(x0, x−1, x1, zΩ) = x0x̄−1z̄Ω, the local transition function
takes the value 2 only if the cell is in state 1 and the broadcasting signal is
1, and does not change state in all other cases, i.e.

ϕ(x0, x−1, x1, zΩ) = max(2 · ((x0 = 1)&(zΩ = 1) ∨ (x0 = 2)), 1 · (x0 = 1)).

Hence, the firing squad problem can be solved in 2 clocks using three
states and two broadcasting signals.

Note that the described solution is fully consistent with the real-
life protocol used by the military: the commander (the leftmost soldier)
commands “fire” and the whole squad shoots.

4. Unidirectional movement of a point on the ray

The problem of unidirectional motion of a point on the ray, proposed and
solved in the paper [10] by E.E. Titova, is as follows.

The set of cells is a set of natural numbers, i.e. ray is directed to the right.
Each cell has two neighbors, one on the left and one on the right of itself. Some

20

of the states of the cells are called labels and considered black, other states
are considered white. Configurations are considered to be correct when there
is exactly one black cell (called a point) on the ray. The cell corresponding to
the number 1 (the leftmost cell) does not have a neighbor on the left of itself,
and we will consider the variable corresponding to the state of the neighbor
on the left of this cell as a control input, to which we can apply any control
actions. The described set of cells with one control input will be called the
screen.

Formally, the screen is the cellular automaton S = (, En, V =
{−1, 1}, ϕ,M), where n is the number of states of the cell of the cellular
automaton, and ϕ : E3

n → En is a local transition function, M is a set of
labels, M ⊂ En, 0 6∈ M . If the cell is in a state of M , then informally we
believe that it is painted black, otherwise it is painted white. We call the
variable x−1 of the local transition function of the cell corresponding to the
number 1, (of the leftmost cell) the control input of the screen S.

Law of motion is an infinite sequence (superword) of zeros and ones. If
F = f1, f2, f3, . . . is the law of motion, then we denote by F (t) the t-th
element of the sequence, i.e. F (t) = ft.

We say that on the screen S the point moves according to the law F , if
the following conditions are satisfied:

1) at some point in time, a label appears in the leftmost cell of the screen
(before that there are no labels on the screen), this moment is called
the movement start ;

2) changing the position of the label on the screen at the t-th moment from
the movement start corresponds to the t-th letter in the superword F ,
namely, if F (t) = 0, then in (t + 1)-th moment the label remains in
the same cell where it was at the current moment, if F (t) = 1, then in
(t + 1)-th moment the label moves one cell to the right, compared to
its current position;

3) at each moment of time after the movement start, there is exactly one
label on the screen.

A S screen will be called universal for the set of laws of motion F if for
any F from F there is such a control sequence supplied to the control input
of the screen that provides a point movement by the law F on the screen.

We denote by Fs the set of such laws of motion F that do not contain
more than s ones in a row.

The following theorems are proved in [10].

Theorem 1. For any screen S, there exists a law of motion F ∈ {0, 1}∞
such that it is impossible to realize the motion of a point according to the law
F on the screen S.

21

Theorem 2. There is a law of motion F ∈ {0, 1}∞, the movement of which
cannot be realized on any screen S.

Theorem 3. There is a universal screen with 2s+2 states for the set of laws
of motion Fs.

The question of describing the set of all realized laws of motion remains
open, although G.V. Kalachev and E.E. Titova [11] have significantly
advanced in this direction.

We present a cellular automaton with locators that solves the problem of
unidirectional motion of a point on the ray.

Consider the following cellular automaton with the locators σ1 =
(, E2, V = {−1, 1}, E2,∨, L = {Ω}, ϕ, ψ,M = {1}), where ∨ is the
disjunction taken as the determining operation on the semigroup of signals
E2 = {0, 1}, the locator pattern consists of one full solid angle Ω, the set of
labels consists of one character 1, broadcasting function ψ is identically zero,
the local transition function takes the value 1 in only two cases: if the cell is
in state 1 and the broadcasting signal is 0, or if the cell on the left is in state
1 and the broadcasting signal is 1, i.e. ϕ(x0, x−1, x1, zΩ) = x0&z̄Ω ∨x−1&zΩ.

We assume that the variable x−1 of the local transition function of the
leftmost cell is the control input. In addition, we will consider that signals
from E2 can be broadcasted as control actions.

It is clear that in order to start moving, you need to send 1 to the control
input, as well as send 1 to the air. As a result, the label appears on the screen
in the leftmost cell. Further, in order to realize the law of motion F , it is
necessary to send the value F (t) to the air at the time t.

Thus, using cellular automata with locators, any law of motion can be
realized, and the number of states of this automaton is 2, and the cardinaity
of the broadcasing alphabet is 2.

In fact, with the help of signals on the air we give commands to the point,
move it or stand.

5. Construction of the shortest path

The problem of constructing the shortest path for cellular automata is as
follows. In the initial configuration, there are only two cells in the active
state, which we will call the starting points. The shortest path is considered
to be built if, at some point in time, the configuration becomes stable, and the
active cells of this configuration form the shortest path between the starting
points.

Аn adaptation of the traditional way to solve this problem to cellular
automata is provided in [12]. Such adaptation involves the presence of three
stages:

22

1) A propagation of an expanding signal from one of the starting points.
When expanding, each cell remembers where the signal came from.
This will allow to carry out a reverse move later.

2) When the wave reaches the second starting point, a reverse movement
is carried out, leading to the first point, which gives the shortest path.

3) At the same time, a purification wave starts. This wave switches all
the cells except the path cells into the quiescent state. In order for this
wave to catch up with the expanding wave, the expanding wave from
the first stage must expand at a half speed, and the purification wave
must expand at a unit speed.

The work [12] gives a proof that the automaton proposed by the authors
has 14 states. This work does not estimate the time it takes to build the path,
but it is not difficult to see that the time to build the path is no less than
6n, where n is the Manhattan distance between the starting points. Here, 2n
clock cycles are used at the first stage, and 4n cycles are necessary for the
third stage. It is possible to speed up the process by launching an expanding
wave from both starting points, but it is clear that the path construction
time will be proportional to the distance between the starting points.

Now consider the solution to the problem by cellular automata with
locators.

Consider the following cellular automaton with locators
σ2 = (2, E2, V = {(−1, 0), (0, 1), (1, 0), (0,−1)}, E2,∨, L =
{(−1, 0), (0, 1), (1, 0), (0,−1)}, ϕ, ψ), where ∨ — a disjunction taken
as a determining operation on a semigroup of signals E2 = {0, 1}, a
neighborhood pattern is “cross”, a pattern of locators consists of four rays
directed left, up, right and down, broadcasting function ψ takes the value 1
if the cell is in state 1 and one of four cases occurs: if all its neighbors are
in state 0; the cell does not have a neighbor from above in state 1 and the
upper locator receives signal 1; the cell does not have a left neighbor in state
1 and the left locator receives signal 1; the cell has no neighbor to the right
in state 1 and the right locator receives signal 1; i.e.

ψ(x0, x−1,0, x0,1, x1,0, x0,−1, z−1,0, z0,1, z1,0, z0,−1) =

= x0(x̄−1,0x̄0,1x̄1,0x̄0,−1 ∨ x̄0,1z0,1 ∨ x̄−1,0z−1,0 ∨ x̄1,0z1,0);

the local transition function takes on value 1 if the cell was in state 1, or if
signals from the air came to one of four pairs of locators at the same time:
top and right, top and left, top and bottom, left and right, i.e.

ϕ(x0, x−1,0, x0,1, x1,0, x0,−1, z−1,0, z0,1, z1,0, z0,−1) =

= x0 ∨ z0,1z1,0 ∨ z0,1z−1,0 ∨ z0,1z0,−1 ∨ z−1,0z1,0.

23

We show that the aforementioned cellular automaton with locators solves
the problem of constructing the shortest path.

In the initial (zero) clock cycle on the plane, there are only two active
cells, which we call the initial ones.

We consider various cases of the location of the initial cells.
Case 1. The initial cells are located on the same horizontal. We denote

by A the left initial cell, and by B the right one.
Case 1.1. If the initial cells are adjacent, then this pair of cells makes up

the shortest path. It remains to note that the signals will not be broadcasted
on the air, therefore, new active cells will not appear, and, therefore, the
configuration will remain stable.

Case 1.2. If the initial cells are not adjacent, then the broadcasting
function of each of the initial cells will become equal to 1, since these cells
have no neighbors. Consequently, on step 1, a signal will be broadcast from
A and B cells, and for all cells between A and B cells, the left and right
locators will receive signals. Therefore, the local transition functions of these
cells will take the value 1. Therefore, on step 2, all cells between A and B will
go to state 1. The shortest path is constructed. Since all cells have neighbors,
the broadcasting function of all cells will take the value 0, and the resulting
configuration will remain stable.

Case 2. Initial cells are located on one vertical. This case is proved
similarly to the case 1.

Case 3. The initial cells are in general position. Let’s mentally draw
vertical and horizontal lines through the initial cells. As a result, we get
an imaginary rectangle with sides parallel to the coordinate axes, at the two
diagonal vertices of which the initial cells are located.

Case 3.1.One initial cell is located in the upper left corner of the rectangle
(we denote it by A), and the second initial cell is located in the lower right
corner (we denote it by B).

Since the initial cells have no neighbors, the broadcasting function of
these cells will take the value 1. Therefore, on step 1, a signal will go from
the cells A and B on the air. The cell located in the lower left corner
of the rectangle (denoted by C) will receive signals from the upper and
right locators. Therefore, its local transition function will take the value 1.
Therefore, at step 2, the cell C will become active.

Case 3.1.1. The cell C is adjacent to both A and B. Therefore, the
shortest path is built. All cells have neighbors, therefore, signals will not
be broadcasted anymore, and the configuration will remain stable.

Case 3.1.2. The cell C is not adjacent to A, and is adjacent to B. Then
the broadcasting function of the cell C will take the value 1. Therefore,
on step 3, signals from two cells will go on the air: A and C. This means
that all cells between A and C will receive signals to their upper and lower

24

locators. As a consequence, their local transition function will take the value
1. Hence, on step 4, all cells between A and C will become active. Now all
cells have neighbors, therefore, signals will not be broadcasted anymore, and
the configuration will remain stable.

Case 3.1.3. The cell C is adjacent to A, and is not adjacent to B. This
case is proved similarly to the case 3.1.2.

Case 3.1.4. The cell C is adjacent to neither A nor B. Then the
broadcasting function of the cell C will take the value 1. Thus, on step 3,
signals from three cells will go on the air: A, B and C. This means that all
cells between A and C will receive signals to their upper and lower locators,
and all cells between B and C will receive signals to their left and right
locators. Thereby, the local transition function of all these cells will take the
value 1. Then, on step 4, all cells between A and C and all cells between
B and C will become active. The shortest path will be built. All cells have
neighbors, with the result that signals will not be broadcasted anymore, and
the configuration will remain stable.

Case 3.2. One initial cell is located in the lower left corner of the
imaginary rectangle, and the second initial cell is located in the upper right
one. The proof is similar to the proof of the case 3.1.

Finally, we have shown that the proposed cellular automaton with
locators allows us to build the shortest path in no more than 4 clocks.
Moreover, it has only 2 states and 2 broadcasting signals.

Список литературы
[1] Von Neumann J., Collected works, New York, 1961 – 1963.
[2] Von Neumann J., Theory of self-reproducing automata, London, 1966.
[3] Burks A. W., Essays on Cellular Automata, Urban, IL: University of Illinois

Press, 1970.
[4] Moore E. F., “Machine models of self-reproduction”, Proceedings pf Symposia

in Applied Mathematics, 14 (1962), 17–33.
[5] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Fundamentals of the theory

of homogeneous structures, Nauka, Moscow, 1990 (In Russian).
[6] Arrighi P., “An overview of Quantum Cellular Automata”, arXiv:1904.12956v2

[quant-ph] 6 Sep 2019, September 9, 2019, 1–23.
[7] Li W., “Phenomenology of Non-local Cellular Automata”, Stat. Phys.l, 68:5/6

(1992), 829-882.
[8] Kudryavtsev V. B., Gasanov E. E., Podkolzin A. S., Theory of Intelligent

Systems: in 4 books. Book Four. Theory of Automata, Publishing Solutions,
Moscow, 2018 (In Russian).

[9] Moore F. R., Langdon G. G., “A generalized firing squad problem”, Information
and Control, 12:3 (March 1968), 212–220.

[10] Titova E. E., “Designing moving images by cellular automata”, Intelligent
systems, 18:1 (2014), 153–180 (In Russian).

25

[11] Kalachev G. V., Titova E. E., “On the measure of the set of laws of motion
of a point realized by cellular automata”, Intelligent systems. Theory and
Applications, 22:3 (2018), 105–125 (In Russian).

[12] Hochberger C., Hoffmann R., “Solving routing problems with cellular au-
tomata”, Proceedings of the Second Conference on Cellular Automata for Re-
search and Industry, Octber 1996, 89–98.

26

The one-dimensional closest neighbor search
problem solution using the cellular

automata with locators 1

D. I. Vasilev2

The paper considers applying the locator cellular automaton model
to the closest neighbour search problem. The locator cellular automaton
model assumes the possibility for each cell to translate a signal through
any distance using ether. It is proven in this paper that such possibility
allows to decrease the problem complexity from linear to logarithmic
(against the classic cellular automaton model).

Keywords: cellular automaton, homogeneous structures,the closest
neighbour search problem.

1. Introduction

Cellular automata (other names: self-reproducing automata and
homogeneous structures) are discrete mathematical models of a wide
class of real systems along with the processes taking place in them.

Theory of self-reproducing automaton was introduced by John von
Neumann[2, 1] to describe the processes self-reproduction in biology and
technology. His model was further developed and the term “Cellular
automaton” as it described below was used by A. Burks [3], E. Moore [4],
V. B. Kudryavtsev, A. S. Podkolzin, A. A. Bolotov [5] and other researchers.

Cellular automaton — is a mathematical object with discrete space and
time. Its every position in space represented by a single cell, and each moment
in time represented by discrete time step or generation. The state of each
spatial cell is determined by very simple rules of interaction. These rules
prescribe changes in the state of each cell in the next time step in response
to the current state of neighboring cells.

In the paper of Gasanov E.E. [9] the concept of a cellular automaton
with locators was introduced, which differs from the concept of a classic
cellular automaton in that it allows the transmission of information not only
between neighboring cells, but also at any distance, by means of transmitting
a signal to the ether. The paper considers the application of this model to
the one-dimensional closest neighbor search problem: a special point called

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24,
No. 3, 99-119 (in Russian).

2 Vasilev Denis Igorevich — junior researcher, Lomonosov Moscow State University,
Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent
Systems, email: denis.vasilev.igor@gmail.com

27

"central"and some finite set of "target"cells are arbitrarily marked on Z1; the
problem is to understand which of the target points is closer to the central
one. The classic model of a cellular automaton solves this problem in linear
time (by the minimal distance between the central and the target points). In
this paper, it will be shown that the problem can be solved in logarithmic
time via the cellular automaton with locators model.

The author expresses gratitude to Professor E.E.Gasanov for setting the
problem and Ph.D. G.V.Kalachev for valuable comments and suggestions.

2. The problem description and results formulation.

In the paper of Gasanov E.E. [9] the concept of a cellular automaton with
locators was introduced. Here we will give this concept, narrowing it down
to the one-dimensional case.

By a solid angle in Rk we mean the union of all the rays in the space Rk
emanating from a given point (vertex of an angle) and intersecting some
hypersurface in Rk. In the definition, we assume that a solid angle does not
contain its vertex. In particular, in this paper we consider two degenerate
cases: the full solid angle coinciding with Rk without the vertex of the angle,
which we denote by Ω, and solid angles equal to one ray. If a solid angle is a
ray, we denote it by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

σ = (Zk, En, V, Eq,+, L, ϕ, ψ)

where Zk is the set of k-dimensional vectors with integer coordinates,
En = {0, 1, . . . , n − 1}, V = (α1, . . . , αh−1) is an ordered set of pairwise
different nonzero vectors from Zk, Eq = {0, 1, . . . , q−1}, + is a commutative
semigroup operation defined on Eq, L = (ν1, . . . , νm) is an ordered set of
pairwise different solid angles in Rk with a vertex at the origin, ϕ : Ehn×Emq →
En is a function depending on the variables x0, x1, . . . , xh−1, z1, . . . , zm such
that ϕ(0, . . . , 0) = 0, ψ : Ehn × Emq → Eq is a function that depends on the
variables x0, x1, . . . , xh−1, z1, . . . , zm. Here the variables x0, x1, . . . , xh−1 take
values from En and the variables z1, . . . , zm take values from Eq. Elements
of the set Zk are called cells of the cellular automaton σ; elements of the
set En are called cell states of the cellular automaton σ; the set V is called
the neighborhood pattern of the cellular automaton σ; elements of the set Eq
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton σ; the function ϕ is called the local transition function
of the automaton σ; the function ψ is called the broadcasting function of
the automaton σ. The state 0 is interpreted as rest state and the condition
ϕ(0, . . . , 0) = 0 is interpreted as a condition for maintaining the rest state.

28

Here we need to introduce an ordering of the neighborhood
pattern V and the locator pattern L in order to establish a one-to-one
correspondence between vectors from V and solid angles from L and variables
x0, x1, . . . , xh−1, z1, . . . , zm of the local transition function ϕ and the
broadcasting function ψ respectively. We can make this correspondence
more explicit if we index the variables of the functions ϕ and ψ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ϕ and the broadcasting function ψ depend on the variables x0,
xα1 , . . . , xαh−1

, zν1 , . . . , zνm , where the index of the first variable is the zero
vector 0 = (0, . . . , 0) ∈ Zk. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the rest of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid
angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k = 2, n = 2, q = 2,
V = {(−1, 0), (1, 0)}, and L = {Ω, (0, 1)}, then a local transition function
may look like this: ϕ = x−1,0&zΩ ∨ x1,0&z0,1.

If α ∈ Zk, ν is a solid angle with vertex at the origin, then by ν(α) we
denote the solid angle obtained by translation of the angle ν to the point α.

If α ∈ Zk is a cell of a cellular automaton with locators σ, then the
set V (α) = {α, α + α1, . . . , α + αh−1} is called the neighborhood of the cell
α, and elements of the set L(α) = {ν1(α), . . . , νm(αm)} are called locators of
the cell α.

A state of a cellular automaton with locators σ is a pair (e, f), where e
is an arbitrary function from the set Zk to the set Eq, called broadcast state, f
is an arbitrary function from the set Zk to the set En and called distribution
of states of the cellular automaton with locators σ. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set En and some signal from the set
Eq to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by Σ.

If α ∈ Zk and (e, f) is a state of a cellular automaton with locators
σ, then the value e(α) is called the signal of the cell α, defined by the state
(e, f), and the value f(α) is the state of the cell α, determined by the state
(e, f). For each i ∈ {1, . . . ,m} the value

si(α) =
∑

β∈νi(α)∩Zk
e(β) (1)

29

we call the value of the locator νi, determined by the state (e, f). Here, in the
summation the semigroup operation + defined on Eq is used.

On the set Σ we define the global transition function Φ of a cellular
automaton with locators σ, putting Φ(e, f) = (e′, f ′), where (e, f), (e′, f ′) ∈
Σ and for any cell α ∈ Zk the following identities hold

f ′(α) = ϕ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)), (2)

e′(α) = ψ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)). (3)

A meaningful interpretation of the mapping Φ is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ψ and ϕ in the same way for all cells.

By the behavior of a cellular automaton with locators σ we call
a sequence (e0, f0), (e1, f1), (e2, f2), . . . of states such that the equation
(ei+1, fi+1) = Φ(ei, fi) holds for all i = 0, 1, 2, The state (ei, fi) is called
the state of the cellular automaton with locators σ at the time i, and (e0, f0)
is also called the initial state of the cellular automaton with locators σ.

Let’s formulate the closest neighbour search problem on the line. Let
the I be the initial state of a cellular automaton on Z1 which satisfies the
following conditions:

1) Any cell is on one of {qS ; qC0 , ∗} states.

2) There is only one qC0 cell.

3) There is a finite and non-empty set of qS cells.

We will define that a cellular automaton state I ′ is solution for the problem
I if I ′ satisfies the following conditions:

1) The qC0 cell from I is in qCF state in I ′.

2) The cell which is the closest to the qC0 cell in I is in the qLE state if
it’s to the left and in qRE state if it is ti the right. If there are two
closest cell then the right cell must be in ∗ state and the left one — in
qLE state.

3) The cells which lie between qCF and qLE cells are in qLF state. The
cells which lie between qCF and qRE cells are in qRF state.

4) The rest cells are in ∗ state.

We define that cellular automaton σ solves the closest neighbour search
problem if it satisfies the following conditions:

30

1) If the initial state I of the cellular automaton is a closest neighbour
search problem then the automaton must end up in I ′ state which is
solution for I.

2) If the automaton takes state S which is solution for some closest
neighbour search problem this state must be kept for all the next tacts.

There is a cell automaton with locators σ with 25 states and the ether
alphabet power 12 which solves the closest neighbour search problem for not
longer than log2 s + 7, where s is the distance between the qC0 cell and the
closest to it qS cell.

No cell automaton with locators σ can solve the closest neighbour
search problem faster than logM (s5), where s is the distance between the qC0

cell and the closest to it qS cell and M is the ether alphabet power.

3. Formal automaton description

Let’s consider cellular automaton σ = (Z1, En, V, Eq,+, L, ϕ, ψ), where V =
{(1), (−1)}, Eq = {0, 1}2 × {0, 1, 2}, and L = (ν−1, ν1), where ν−1, ν1 —
degenerate solid angles, corresponding to vectors (−1) and (1).

Let’s define the semigroup operation on Eq as follows: (a1, b1, c1) +
(a2, b2, c2) = (a1 + a2,max(b1, b2),max(c1, c2))

Let the state set En = {q=
CC ; q<CC ; q>CC ; qS ; qC0 ; qL; qR;

qC2 ; qC1 ; qCL1
; qCR1

; qLF ; qRF ; qLE ; qRE ; qCF ; qL∗ ; qR∗ ; qL1 ; qR1 ; qL0 ; qR0 ; q∗L; q∗R; ∗}

Let’s define state ∗ as the rest state. The automaton is designed in a
way that only a limited set of cells will be in a non-rest state on each tact.
Considering that operation + has the property (0, 0, 0) + (0, 0, 0) = (0, 0, 0),
we can conclude that any locator’s value is calculated from a limited set of
non-zero terms, so it is defined correctly.

Let’s describe ϕ and ψ functions for each automaton state:
qLk and qRk , k ∈ 0; 1 are the key autmaton states. If there are some

amount of qL1 consecutive cells then on the next tact every second qL1 cell will
go to the qL0 state and the rest qL1 cells will keep their state. It will be proven
later that such behavior allows to translate a segment length bit by bit.

ϕ(qLk , q−1, q1, zν−1 , zν1) =

qL(k∧z1ν−1
), if z

3
ν1 = 0

qLF , if z3
ν1 = 1

∗ in other cases

, (4)

ψ(qLk , q−1, q1, zν−1 , zν1) = (k ∧ z1
ν−1

, k ∧ z1
ν−1

, 0), (5)

31

ϕ(qRk , q−1, q1, zν−1 , zν1) =

qR(k∧z1ν1), if , z
3
ν−1

= 0

qRF , if z3
ν−1

= 2

∗ in other cases

, (6)

ψ1(qRk , q−1, q1, zν−1 , zν1) = (k ∧ z1
ν1 , k ∧ z1

ν1 , 0). (7)

qC0 is the initial central cell state. The cell in this state will translate
(0, 0, 1) signal for other cells to determine if they are on the left or on the
right side.

ϕ(qC0 , q−1, q1, zν−1 , zν1) = qC1 , (8)

ψ(qC0 , q−1, q1, zν−1 , zν1) = (0, 0, 1). (9)

qS is the initial target cells state. The cell in this state will wait for a
special signal to change it’s state to the left or right version.

ϕ(qS , q−1, q1, zν−1 , zν1) =

q∗L, if z
3
ν1 = 1

q∗R, if z
3
ν−1

= 1

qS in other cases
, (10)

ψ(qS , q−1, q1, zν−1 , zν1) =

{
(0, 0, 1) if z3

ν1 = 1

(0, 1, 0) in other cases
. (11)

∗ is the initial state of internal cells (cells which are not central or
target). If ∗-cell is part of the problem (i.e. it lies between the central cell
and the side-closest target cell) it will wait for a special signal to change it’s
state on the left or right version. Otherwise such cell will keep calm as a rest
cell.

ϕ(∗, q−1, q1, zν−1 , zν1) =

qL∗ , if z3
ν1 = 1, z2

ν−1
= 1

qR∗ , if z2
ν1 = 1, z3

ν−1
= 1

∗ in other cases
, (12)

ψ(∗, q−1, q1, zν−1 , zν1) = (0, 0, 0). (13)

States qL∗ and qR∗ are designed for two purposes. First of all, they will
provide right ether structure right before the main part of the algorithm will
begin. Secondly, internal cells in this state are waiting for a special signal to
determine if they lie between the side-closest and the central cell. If they are
not, they go to the rest state.

32

ϕ(qL∗ , q−1, q1, zν−1 , zν1) =

{
∗ if z3

ν1 = 1

qL1 in other cases
, (14)

ψ(qL∗ , q−1, q1, zν−1 , zν1) =

{
(0, 0, 0) if z3

ν1 = 1

(0, 1, 1) in other cases
, (15)

ϕ(qR∗ , q−1, q1, zν−1 , zν1) =

{
∗ if z2

ν−1
= 1

qR1 in other cases
, (16)

ψ(qR∗ , q−1, q1, zν−1 , zν1) =

{
(0, 0, 0) if z2

ν−1
= 1

(0, 1, 1) in other cases
. (17)

q∗L and q∗R are special target cells states. A cell in this state will wait
for a special signal to determine if it is the side-closest target cell. If it is not,
the cell go to the rest state.

ϕ(q∗L, q−1, q1, zν−1 , zν1) =

{
∗ if z3

ν1 = 1

qL in other cases
, (18)

ψ(qL∗ , q−1, q1, zν−1 , zν1) = (0, 0, 0), (19)

ϕ(q∗R, q−1, q1, zν−1 , zν1) =

{
∗ if z2

ν−1
= 1

qR in other cases
, (20)

ψ(qR∗ , q−1, q1, zν−1 , zν1) = (0, 0, 0). (21)

q=
CC , q

>
CC , q

<
CC are working central cell states. The central cell compares

lengths of the left and the right segments. Automaton works in a way that
those lengths binary notation come to the central cell as ether signals: from
the lowest bit to the highest. The central cell can change it’s status depending
on the current bit pair: q>CC — if current left bit is greater than the right one,
q<CC — if it is less. If the left bit is equal to the right one, the central cell
state inherits from the previous tact. State q=

CC occurs in the beginning and
may stay until the first non-equal bit pair.

ϕ(qXCC , q−1, q1, zν−1 , zν1) =

qXCC , if z
2
ν−1

= 1, z2
ν1 = 1, z1

ν−1
= z1

ν1

q>CC , if z
2
ν−1

= 1, z2
ν1 = 1, z1

ν−1
> z1

ν1

q<CC , if z
2
ν−1

= 1, z2
ν1 = 1, z1

ν−1
< z1

ν1

qCF in other cases

, (22)

33

ψ(qC1 , q−1, q1, zν−1 , zν1) =

(0, 0, 0), if z2
ν−1

= 1, z2
ν1 = 1

(0, 0, 1), if (z2
ν−1

= 0 ∨ z2
ν1 = 0)∧

∧((z2
ν−1

> z2
ν1) ∨ (z2

ν−1
= z2

ν1 ∧ qXCC 6= q>CC))

(0, 0, 2) in other cases

.

(23)
qL and qR are side-closest target cells states. They just mark the end

of the segment and go to their final state when hear a special ether signal.

ϕ(qL, q−1, q1, zν−1 , zν1) =

qLE , if z3
ν1 = 1

∗, if z3
ν1 = 2

qL in other cases
, (24)

ψ(qL, q−1, q1, zν−1 , zν1) = (0, 0, 0), (25)

ϕ(qR, q−1, q1, zν−1 , zν1) =

qRE , if z3
ν−1

= 2

∗, if z3
ν−1

= 1

qR in other cases
, (26)

ψ(qR, q−1, q1, zν−1 , zν1) = (0, 0, 0). (27)

qC2 state is designed to for the central cell to looks for a special signal
from each side so it could find out if there is at least one target cell at each
side. If not, the problem is much easier and can be resolved in a constant
time.

ϕ(qC2 , q−1, q1, zν−1 , zν1) =

qCL1
, if z2

ν1 = 0

qCR1
, if z2

ν−1
= 0

qC1 , in other cases
, (28)

ψ(qC2 , q−1, q1, zν−1 , zν1) = (0, 0, 0). (29)

qC1 is a 1-tact sleep state. The central cell in this state don’t send
anything in the ether.

ϕ(qC1 , q−1, q1, zν−1 , zν1) = qC1 , (30)

ψ(qC1 , q−1, q1, zν−1 , zν1) = (0, 0, 0). (31)

qCL1
and qCR1

are states which occur when the problem is trivial in a
way that all the target cells are located at the same side of the central cell.

34

ϕ(qCL1
, q−1, q1, zν−1 , zν1) = qCF , (32)

ψ(qCL1
, q−1, q1, zν−1 , zν1) = (0, 0, 1), (33)

ϕ(qCR1
, q−1, q1, zν−1 , zν1) = qCF , (34)

ψ(qCR1
, q−1, q1, zν−1 , zν1) = (0, 0, 2). (35)

ψ and ϕ functions below are function for the finish states. Those state
do not change or send anything to the ether.

ϕ(qLF , q−1, q1, zν−1 , zν1) = qLF , (36)

ψ(qLF , q−1, q1, zν−1 , zν1) = (0, 0, 0), (37)

ϕ(qRF , q−1, q1, zν−1 , zν1) = qRF , (38)

ψ(qRF , q−1, q1, zν−1 , zν1) = (0, 0, 0), (39)

ϕ(qLE , q−1, q1, zν−1 , zν1) = qLE , (40)

ψ(qLE , q−1, q1, zν−1 , zν1) = (0, 0, 0), (41)

ϕ(qRE , q−1, q1, zν−1 , zν1) = qRE , (42)

ψ(qRE , q−1, q1, zν−1 , zν1) = (0, 0, 0), (43)

ϕ(qCF , q−1, q1, zν−1 , zν1) = qCF , (44)

ψ(qCF , q−1, q1, zν−1 , zν1) = (0, 0, 0). (45)

Let’s define left cells as cells with L character in the state name (and
correspondingly define right cells). Let Q1 = {qXk }, where X ∈ {R,L}, k = 1,
Q0 = {qXk }, where X ∈ {R,L}, k = 0.

35

4. Automaton’s behavior.

Let’s describe automaton’s behavior on each algorithm phase. We also
will provide a simple example for better understanding. We will describe
automaton states as follows:

t=0
Q qS ∗ qS ∗ ∗ ∗ ∗ ∗ ∗ qC0

∗ ∗ ∗ ∗ ∗ qS
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
ψ3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Where Q = q1, q2, ..., qn — automaton cells states. We only consider
cells which lie between non-∗ cell in the initial automaton state. All qS and
qC0 cells are also considered.

L1 = l11, l
1
2, ..., l

1
n — first components of the left ether sum.

L2 = l21, l
2
2, ..., l

2
n — second components of the left ether sum.

L3 = l31, l
3
2, ..., l

3
n — third components of the left ether sum.

R1 = r1
1, r

1
2, ..., r

1
n — first components of the right ether sum.

R2 = r2
1, r

2
2, ..., r

2
n — second components of the right ether sum.

R3 = r3
1, r

3
2, ..., r

3
n — third components of the right ether sum.

ψ1 = ψ1
1, ψ

1
2, ..., ψ

1
n — the first component of the signal, being sent to

the ether
ψ2 = ψ2

1, ψ
2
2, ..., ψ

2
n — the second component of the signal, being sent

to the ether
ψ3 = ψ3

1, ψ
3
2, ..., ψ

3
n — the third component of the signal, being sent to

the ether

4.1. Phase 1: determine the orientation.
Let the initial automaton state satisfy the Theorem 1 conditions:

t=0
Q qS ∗ qS ∗ ∗ ∗ ∗ ∗ ∗ qC0

∗ ∗ ∗ ∗ ∗ qS
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
ψ3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

There are only (0, 0, 0) signals in the ether on the first tact. Transition
functions of qS and ∗ states are equal to qS and ∗ respectively when

36

the input ether sums are (0, 0, 0). Broadcasting functions of these states
are equal to (0, 1, 0) and (0, 0, 0) respectively. The transition function
of the qC0 state is equal to qC2 , and the broadcasting function takes the
value (0, 0, 1). Overall, only the central cell will change it’s state on the
first tact. Besides, the ether space will fill with central and target cells signals:

t=1
Q qS ∗ qS ∗ ∗ ∗ ∗ ∗ ∗ qC2 ∗ ∗ ∗ ∗ ∗ qS
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R3 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
ψ3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

The transition functions values of qS and ∗ states depend on the side
from which signals (0, 1, 0) and (0, 0, 1) came. qS cells could either go to the
q∗L state and translate a (0, 0, 1) signal or go to the q∗R state and translate a
(0, 1, 0) signal. ∗ cells can go to qL∗ or qR∗ states and always output a (0, 0, 0)
signal. qC2 cell looks for a (0, 1, 0) signal from each side. If such a signal is
only present on one side, central cell goes to qCL1

or qCR1
state (depending

on the side on which (0, 1, 0) signal occurs) and we don’t need to compare
segments from different sides. This is an easy case and the problem can be
resolved in a constant time at this point. In our case the signal is present on
both sides so the central cell goes to the qC2 state to sleep for 2 tacts and
wait before the other cells are ready to begin the length calculation:

t=2
Q q∗L qL∗ q∗L qL∗ qL∗ qL∗ qL∗ qL∗ qL∗ qC1 qR∗ qR∗ qR∗ qR∗ qR∗ q∗R
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0
ψ2 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This is how Phase 1 ends. To sum up, from all the initial qS cells we
only keep the two closest to the center. Those cells are now oriented (i.e. are
either in qL or qR states); the ∗ cells which lie between the central cell and
one of the two kept target cells will also go to the oriented state qL∗ or qR∗ ;
the central cell will go to the qC1 state.

4.2. Phase 2: length comparison.

This is a complicated iterative phase.
We will call qL and qR cells extreme, and cells which lie between

the central and an extreme cell — internal. Let’s define that this phase

37

ends when the central cell translate a signal ψ ∈ {(0, 0, 1); (0, 0, 2)}. The
transition functions are designed in a way that the central cell is always in
q=
CC , q

>
CC , q

<
CC state in Phase 2 and it can only go to another state when it

send one of {(0, 0, 1); (0, 0, 2)} signals. Finally, it’s easy to see that signals
{(0, 0, 1); (0, 0, 2)} are only sent when all the internal cells from some side
are in q ∈ Q0 state.

Let’s consider the left side of the cellular automaton. We will enumerate
the cells from left to right and denote qi,t, i ∈ {1, 2, ..sL}, t ≥ 0 as an i-th cell
state in the t-th tact. We assume that t = 0 — the beginning of Phase 2.

qi,t ∈ Q1 if and only if i(mod 2t) = 0.

Доказательство. Let ’s prove this statement by induction:
At the t = 0 moment all the cells are qL1 ∈ Q1 states, which is equivalent

to i(mod 20) = 0.
Let’s prove the Lemma for t = 1. From the transition functions of

the {qL1 ; qR1 ; qL0 ; qR0 } states we can see that qi,1 ∈ Q1 ↔ qi,0 ∈ Q1 ∧
zi,0ν−1 = (1, α, β) ↔ zi,0ν−1 = (1, α, β) (here and further α and β are
arbitrary elements of the {0;1} and {0;1;2} sets respectively). We know that

zi,0ν−1 =
i∑

j=1
ψ(qL∗ , q−1, q1, zν−1 , zν1) =

i−1∑
j=1

(1, 1, 0) = (i(mod 2), 1, 0), therefore

qi,1 ∈ Q1 ↔ i(mod 2) = 0.
Let’s assume the Lemma is true for t = 0, 1, 2, ..., k and prove it is true

for t = k + 1. From the transition functions of the {qL1 ; qR1 ; qL0 ; qR0 } states we
can see that qi,k+1 ∈ Q1 ↔ qi,k ∈ Q1 ∧ zi,kν−1 = (1, α, β). The broadcasting
functions of the {qL1 ; qR1 ; qL0 ; qR0 } states are designed in a way that ψi,k−1 =

(1, α, β) ↔ qi,k ∈ Q1, therefore z
i,k
ν−1 = (

∑
j(mod 2k)=0,j<i,j>0

1, α, β). Thus, by

the induction assumption:
qi,k+1 ∈ Q1 ↔ qi,k ∈ Q1 ∧ zi,kν−1 = (1, α, β) ↔ i(mod 2k) = 0 ∧∑

j(mod 2k)=0,j<i,j>0

1 = 1 ↔ i(mod 2k) = 0 ∧ (i(mod 2k+1) > 2k ∨ i(mod

2k+1) = 0)↔ i(mod 2k+1) = 0

We can also prove such lemma for the right side because the transition
and broadcasting functions of the left and right cells only depend on left and
right ether signals respectively.

It follows from the Lemma that at the t moment the central cell hear
the value

∑
i(mod 2t)=0,i∈[1;s]

1 = b s2t c (mod2) at the 1-st ether dimension, which

is equal to (t + 1)-th bit in s length binary notion. Thus, the central cell
can compare the values sL and sR bit by bit, from the lowest to the highest
position. The transition and broadcasting functions of the qXCC , X ∈ {=, <
,>} states implement such length comparison algorithm: if left i-th bit is

38

greater than such bit from the right then the central cell goes to the q>CC
state; if it is lower — to the q<CC state; if they are equal, the state doesn’t
change. This algorithm continue working until one of the lengths translation
ends (z2

ν−1
= 0 ∨ z2

ν1 = 0). In this moment the central cell sends one of the
signals (0, 0, 2); (0, 0, 1) depending on which side appeared to be shorter.

Phase 2 process for the given example:

t=3
Q ∗ ∗ qL qL1 qL1 qL1 qL1 qL1 qL1 q=CC qR1 qR1 qR1 qR1 qR1 qR
L1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1
L2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0
ψ2 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=4
Q ∗ ∗ qL qL0 qL1 qL0 qL1 qL0 qL1 q<CC qR0 qR1 qR0 qR1 qR0 qR
L1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1
L2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
ψ2 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=5
Q ∗ ∗ qL qL0 qL0 qL0 qL1 qL0 qL0 q>CC qR0 qR1 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
L2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=6
Q ∗ ∗ qL qL0 qL0 qL0 qL0 qL0 qL0 q>CC qR0 qR0 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

39

4.3. Phase 3: finalize.
This is a very straight forward phase. It begins after the central cell send on
of the signals {(0, 0, 1), (0, 0, 2)} during Phase 2. Let’s assume that the left
side were longer and it was the (0, 0, 2) signal:

t=6
Q ∗ ∗ qL qL0 qL0 qL0 qL0 qL0 qL0 q>CC qR0 qR0 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

This signal will take place in the ether in the next tact:
t=7

Q ∗ ∗ qL qL0 qL0 qL0 qL0 qL0 qL0 qCF qR0 qR0 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When left cells hear this signal they go to the ∗ state. The right target cell
goes to the qRE state and the right internal cells — to the qRF state:

t=8
Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ qCF qRF qRF qRF qRF qRF qRE
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5. Complete calculation process for the given
example

For clarity we write the whole process for the given example below:

40

t=0
Q qS ∗ qS ∗ ∗ ∗ ∗ ∗ ∗ qC0

∗ ∗ ∗ ∗ ∗ qS
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
ψ3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

t=1
Q qS ∗ qS ∗ ∗ ∗ ∗ ∗ ∗ qC2 ∗ ∗ ∗ ∗ ∗ qS
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R3 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
ψ3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

t=2
Q q∗L qL∗ q∗L qL∗ qL∗ qL∗ qL∗ qL∗ qL∗ qC1 qR∗ qR∗ qR∗ qR∗ qR∗ q∗R
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
R3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0
ψ2 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=3
Q ∗ ∗ qL qL1 qL1 qL1 qL1 qL1 qL1 q=CC qR1 qR1 qR1 qR1 qR1 qR
L1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 1
L2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0
ψ2 0 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=4
Q ∗ ∗ qL qL0 qL1 qL0 qL1 qL0 qL1 q<CC qR0 qR1 qR0 qR1 qR0 qR
L1 0 0 0 0 0 1 1 0 0 1 1 1 0 0 1 1
L2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
ψ2 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

41

t=5
Q ∗ ∗ qL qL0 qL0 qL0 qL1 qL0 qL0 q>CC qR0 qR1 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0
L2 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
R2 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=6
Q ∗ ∗ qL qL0 qL0 qL0 qL0 qL0 qL0 q>CC qR0 qR0 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0

t=7
Q ∗ ∗ qL qL0 qL0 qL0 qL0 qL0 qL0 qCF qR0 qR0 qR0 qR0 qR0 qR
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

t=8
Q ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ qCF qRF qRF qRF qRF qRF qRE
L1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ψ3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6. Automaton runtime
Let’s calculate the time T need for σ to work out. From the previous section:

T = T1 + T2 + T3. (46)

where Tk is duration of corresponding phase. It’s easy to see that T1 =
3, T3 = 2. It follows from the Lemma 2 that if Phase 2 runtime is t then
t = min

2r>s
r = dlog2(s+ 0.5)e, where s = min(sL, sR). Because we start time t

from 0 in Lemma 1, the overall runtime of Phase 2 will be:

42

T2 = dlog2(s+ 0.5)e+ 1 ≤ log2(s) + 2.

Therefore,

T ≤ log2(s) + 7.

References
[1] Von Neumann J., Theory of self-reproducing automata, London, 1966.
[2] Neumann J., von, Collected works, New York, 1961 – 1963.
[3] Burks A., Essays on Cellular Automata, University of Illinois Press, 1971.
[4] Moore E. F., “Machine models of self-reproduction”, Proceedings pf Symposia

in Applied Mathematics, 14 (1962), 17–33.
[5] Kudryavtsev V. B., Podkolzin A. S., Bolotov A. A., Fundamentals of the theory

of homogeneous structures, Nauka, Moscow, 1990 (In Russian).
[6] Kudryavtsev V. B., Gasanov E. E., Podkolzin A. S., Theory of Intelligent

Systems: in 4 books. Book Four. Theory of Automata, Publishing Solutions,
Moscow, 2018 (In Russian).

[7] Titova E. E., “Designing moving images by cellular automata”, Intelligent
systems, 18:1 (2014), 153–180 (In Russian).

[8] Kalachev G. V., Titova E. E., “On the measure of the set of laws of motion
of a point realized by cellular automata”, Intelligent systems. Theory and
Applications, 22:3 (2018), 105–125 (In Russian).

[9] Gasanov E. E., “Cellular automata with locators”, Intelligent systems. Theory
and Applications, 20:2 (2020), 121–133 (In Russian).

43

44

Remarks on the Definition of Cellular
Automaton with Locators 1

Kalachev G.V.2

In [1], a cellular automaton with locators is defined. In this paper
we indicate some inaccuracies and issues of this definition and clarify
it to get rid of these issues. We also give examples of cellular automata
classes with locators that have good properties in a certain sense.

Keywords: cellular automata, homogeneous structures.

1. Introduction

The concept of a cellular automaton (CA) with locators was introduced
in [1]. CA with locators is defined by a 8-tuple (Zn, Q, V,E,+, L, ϕ, ψ).
CA with locators in comparison with a conventional CA (Zn, Q, V, ϕ)
contains additional structure where different elementary automata (cells)
can broadcast signals from the set of broadcasting signals E computed by
the broadcasting function ψ. The signals are summed with the commutative
semigroup operation +. Locators of each cell receive the sum of signals
from the directions specified by the solid angles from the set L. CA
with locators can be considered as a mathematical model of a device
where there are both local interactions between adjacent cells and non-
local interactions through broadcasting, which can be implemented using
some kind of substrate that sums the signals from the cells due to some
physical principle. Such devices can potentially solve some problems in a more
natural way than conventional cellular automata, where sometimes we need
to develop complicated algorithms, in particular when we need to transmit
control signals.

2. Definition of a cellular automaton with locators
according to Gasanov

Let us recall the definition of a cellular automaton with locators introduced
by E. E. Gasanov in [1].

By a solid angle in Rk we mean the union of all the rays in the space Rk
emanating from a given point (vertex of an angle) and intersecting some

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2020) 24, No.
4, 47-56 (in Russian).

2Kalachev Gleb Vyacheslavovich — Candidate of Physical and Mathematical Sciences,
Junior Researcher, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Problems of Theorecical Cybernetics Lab.

45

hypersurface in Rk. In the definition, we assume that a solid angle does not
contain its vertex. In particular, in this paper we consider two degenerate
cases: the full solid angle coinciding with Rk without the vertex of the angle,
which we denote by Ω, and solid angles equal to one ray. If a solid angle is a
ray, we denote it by a vector defining its direction.

A cellular automaton with locators is a 8-tuple

σ = (Zk, En, V, Eq,+, L, ϕ, ψ)

where Zk is the set of k-dimensional vectors with integer coordinates,
En = {0, 1, . . . , n − 1}, V = (α1, . . . , αh−1) is an ordered set of pairwise
different nonzero vectors from Zk, Eq = {0, 1, . . . , q−1}, + is a commutative
semigroup operation defined on Eq, L = (ν1, . . . , νm) is an ordered set of
pairwise different solid angles in Rk with a vertex at the origin, ϕ : Ehn×Emq →
En is a function depending on the variables x0, x1, . . . , xh−1, z1, . . . , zm such
that ϕ(0, . . . , 0) = 0, ψ : Ehn × Emq → Eq is a function that depends on the
variables x0, x1, . . . , xh−1, z1, . . . , zm. Here the variables x0, x1, . . . , xh−1 take
values from En and the variables z1, . . . , zm take values from Eq. Elements
of the set Zk are called cells of the cellular automaton σ; elements of the
set En are called cell states of the cellular automaton σ; the set V is called
the neighborhood pattern of the cellular automaton σ; elements of the set Eq
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton σ; the function ϕ is called the local transition function
of the automaton σ; the function ψ is called the broadcasting function of
the automaton σ. The state 0 is interpreted as rest state and the condition
ϕ(0, . . . , 0) = 0 is interpreted as a condition for maintaining the rest state.

Here we need to introduce an ordering of the neighborhood pattern V
and the locator pattern L in order to establish a one-to-one correspondence
between vectors from V and solid angles from L and variables x0,
x1, . . . , xh−1, z1, . . . , zm of the local transition function ϕ and the
broadcasting function ψ respectively. We can make this correspondence
more explicit if we index the variables of the functions ϕ and ψ by the
vectors and solid angles themselves, i.e. assume that the local transition
function ϕ and the broadcasting function ψ depend on the variables x0,
xα1 , . . . , xαh−1

, zν1 , . . . , zνm , where the index of the first variable is the zero
vector 0 = (0, . . . , 0) ∈ Zk. If we index the variables of the local transition
function and broadcasting function in this way, we can write them in any
order, and then we can define the neighborhood pattern and the locator
pattern simply as a set, not an ordered set.

In the rest of this section we use these conventions: consider the
neighborhood pattern as a set of vectors, and the locator pattern as a set
of solid angles and index the variables of the local transition function and
broadcasting function by the vectors from the neighborhood pattern and solid

46

angles from the locator pattern. At the same time, we often omit the outer
parentheses of the vectors in the indices. For example, if k = 2, n = 2, q = 2,
V = {(−1, 0), (1, 0)}, and L = {Ω, (0, 1)}, then a local transition function
may look like this: ϕ = x−1,0&zΩ ∨ x1,0&z0,1.

If α ∈ Zk, ν is a solid angle with vertex at the origin, then by ν(α) we
denote the solid angle obtained by translation of the angle ν to the point α.

If α ∈ Zk is a cell of a cellular automaton with locators σ, then the set
V (α) = {α, α + α1, . . . , α + αh−1} is called the neighborhood of the cell α,
and elements of the set L(α) = {ν1(α), . . . , νm(αm)} are called locators of
the cell α.

A state of a cellular automaton with locators σ is a pair (e, f), where e is
an arbitrary function from the set Zk to the set Eq, called broadcast state, f
is an arbitrary function from the set Zk to the set En and called distribution
of states of the cellular automaton with locators σ. Such a function can be
interpreted as a certain mosaic arising in the k-dimensional space as a result
of assigning a certain state from the set En and some signal from the set
Eq to each point with integer coordinates. The set of all possible states of a
cellular automaton with locators is denoted by Σ.

If α ∈ Zk and (e, f) is a state of a cellular automaton with locators σ,
then the value e(α) is called the signal of the cell α, defined by the state (e, f),
and the value f(α) is the state of the cell α, determined by the state (e, f).
For each i ∈ {1, . . . ,m} the value

si(α) =
∑

β∈νi(α)∩Zk

e(β) (1)

we call the value of the locator νi, determined by the state (e, f). Here, in the
summation the semigroup operation + defined on Eq is used.

On the set Σ we define the global transition function Φ of a cellular
automaton with locators σ, putting Φ(e, f) = (e′, f ′), where (e, f), (e′, f ′) ∈
Σ and for any cell α ∈ Zk the following identities hold

f ′(α) = ϕ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)), (2)

e′(α) = ψ(f(α), f(α+ α1), . . . , f(α+ αh−1), s1(α), . . . , sm(α)). (3)

A meaningful interpretation of the mapping Φ is that the signal of each
cell and the state of each cell “after the transition” is determined by the state
of the neighborhood of the cell and by the values of the locators “before the
transition” using the rules ψ and ϕ in the same way for all cells.

By the behavior of a cellular automaton with locators σ we call a sequence
(e0, f0), (e1, f1), (e2, f2), . . . of states such that the equation (ei+1, fi+1) =
Φ(ei, fi) holds for all i = 0, 1, 2, The state (ei, fi) is called the state of

47

the cellular automaton with locators σ at the time i, and (e0, f0) is also called
the initial state of the cellular automaton with locators σ.

A state of a cellular automaton is called a configuration if only a finite
number of cells is in a state other than 0 and the signals of all cells are zero.
The set of configurations is denoted by Σ′.

If a certain state of a cellular automaton is specified, then cells that are
in a state other than 0 are called active.

3. Corrections for the definition

3.1. Restriction on solid angles

According to the definition in Section 2, a solid angle is a union of rays
intersecting some hypersurface. However, even in the two-dimensional case,
an angle is defined by a real number which can be used to encode an infinite
amount of information. For the two-dimensional case, we propose to restrict
the set of solid angles to the set of angles bounded by rays going through
points with rational coefficients.

For the multidimensional case, there is even more freedom of choice of a
solid angle. In this case, we propose to introduce the following restriction:
the boundary of a solid angle should consist of hyperplanes spanned by
points with integer coordinates. Note that degenerate solid angles completely
contained in a subspace of a lower dimension are also allowed. Boundary of
such a degenerate angle should consist of parts of hyperplanes specified by
linear equations with integer coefficients.

3.2. Restrictions on the semigroup and the broadcasting
function

The definition of cellular automaton requires the existence of a distinguished
zero state which is preserved by the transition function. It is natural to
add a similar requirement for the broadcasting alphabet. Formally, in [1]
the set E always has a form {0, ..., q − 1} and contains 0, however, there is
no requirement that 0 + x = 0. We propose not to require that E has the
form {0, ..., q − 1} but could contain elements of arbitrary type (apart from
numbers, it is often convenient to use pairs or sets of numbers), but require
that the semigroup (E,+) is a monoid, i.e. there exists a neutral element
0 ∈ E such that 0 + x = x for all x ∈ E.

In [1] there is a restriction on the transition function ϕ(0,0) = 0. It is
natural to add a similar restriction on the broadcasting function:

ψ(0, ν) = 0,

48

i.e. an inactive cell that doesn’t have active neighbors cannot broadcast
nonzero signals.

3.3. Partial definiteness of the global transition function

In equation (1) the value of locator si(α) is defined as a sum of the infinite
number of terms by the integer points of the solid angle where a semigroup
operation is used as an addition. An infinite sum is understood here in the
usual sense (as the limit of partial sums) with the clarification that a discrete
topology is introduced on the set E. In this case, for the series to converge, it
is necessary that starting from some moment, the partial sums are equal to a
constant, which is the sum of the series. This sum can be undefined if the sum
involves an infinite number of nonzero terms. In the general case, the value of
the locator is a partially defined function. Hence the global transition function
of the CA with locators is also partially defined. However, even here a proof
of correctness is required, namely, we need to prove that the convergence of
the series (1) and the value of the sum does not depend on the order of terms
(in the case of numerical series, this is true only for absolutely convergent
series).

Proposition 1. Let (E,+) be a commutative semigroup with discrete
topology. Let {xj}∞j=1 be a sequence of elements E, {yj}∞j=1 be its permutation
(yj = xij). Then if one of the series

∑∞
j=1 xj and

∑∞
j=1 yj converges, then

the second also converges and their sums coincide.

Доказательство. The proof goes by way of contradiction. Without loss of
generality, assume that

∑∞
j=1 yj = a, and the series

∑∞
j=1 xj either diverges

or its sum is not equal to a. This means that in the sequence of partial sums
(Xn)∞n=1, Xn =

∑n
j=1 xj there is an infinite number of terms not equal to a.

Since the first series converges, there exists N0 such that for all n ≥ N0 the
partial sum Yn =

∑n
j=1 yj is equal to a. This means that a + yj = a for all

j > N0.
We denote Kn = {j | ij ≤ n}. Take N ≥ maxj≤N0 ij such that XN = b 6=

a. By construction 1, 2, ..., N0 ∈ KN . Hence

b = XN =

N∑

j=1

xj =
∑

k∈KN

yk =

N0∑

k=1

yj +
∑

j>N0,j∈KN

yj = a+
∑

j>N0,j∈Kn

yj = a.

However b 6= a by our assumption, and we have a contradiction. Hence∑∞
j=1 xn = a, as required.

A state of a CA with locators is called finite if there is only a finite number
of active cells. Note that, taking into account the previous corrections, for

49

finite states the global function is defined since only active cells can broadcast
nonzero signals. However, consider such a CA with locators:

σ = (Z, {0, 1},∅, {0, 1},max, {Ω},max,max),

where Ω corresponds to the locator that receives signals from all directions.
Suppose at the first moment there is exactly one cell is in state 1, and thus
the state is finite. Then this call broadcasts signal 1 and all the cells at the
second moment receive signal max(0, 1) = 1, hence they go to state 1 at the
third moment. Therefore, the state at the third moment is not finite. If we
take ⊕ instead of max as a semigroup operation, then the functioning at the
first two moments will be the same, and at the third moment, the transition
function will not be defined.

4. Interesting classes of CA with locators

4.1. Classes solving the problem of partial definiteness of the
transition function

Taking into account the example from the Section 3.3, it is important to find
classes of CA with locators (Z, Q, V,E,+, L, ϕ, ψ), where the definiteness of
the global transition function is guaranteed at any moment of time for some
class of initial conditions.

4.1.1. Idempotent monoid

Consider the case when the monoid (E,+) is idempotent (is a semilattice),
that is, x+x = x for all x ∈ E. In this case, the sum of an infinite number of
terms depends only on the set of terms present in the sum, and thus reduces
to a finite sum. Therefore, we have the following statement.

Proposition 2. If the monoid (E,+) is idempotent, then the global transition
function of a CA with locators σ = (Z, Q, V,E,+, L, ϕ, ψ) is defined
everywhere.

For example, if E is a linearly ordered set, then (E,max) is an idempotent
monoid with neutral element minE.

4.1.2. Finite CA with locators

We will say that the CA with locators σ is finite if for any finite state S of
σ the next state Φ(S) is also finite.

50

Proposition 3 (Sufficient condition for the finiteness of a CA with locators).
Let σ = (Zn, Q, V,E,+, {ν1, ..., νm}, ϕ, ψ) be a CA with locators satisfying the
following condition:

if ϕ(~0, (e1, ..., em)) 6= 0, then
⋂

i:ei 6=0

νi = ∅.

Then σ is finite.

In this statement it is important that we exclude vertex from the solid
angle, otherwise, the intersection of the solid angles νi would always contain
the origin.

Доказательство. Consider an arbitrary finite state s. Let A be a set of all
cells that are either active itself or have active neighbors, r be the maximum
Euclidean distance between elements of A.

Suppose the state Φ(s) is not finite. In this case, there is an infinite set
M of cells that was not active and didn’t have active neighbors in the finite
state s and that became active in the state Φ(s). For each cell x from M
consider the set of its active locators a(x) and choose such a set of locators
L′ ⊂ L that occurs infinitely many times among a(x) for x ∈ M . Let M ′ =
{x ∈M : a(x) = L′}.

Without loss of generality we assume that L′ = ν1, ..., νk. From the
statement condition we have

⋃k
j=1 νj = ∅.

Let S be the unit sphere in Rn, P =
∏k
j=1(νij ∩ S). Let us show that

d̂ := inf
p∈P

max
1≤j,j′≤k

‖pj − pj′‖ > 0, (4)

where ‖ · ‖ is the Euclidean norm.
Note that each set νij ∩ S is compact, therefore, their product P is also

a compact set. Hence continuous function d(p) := maxj 6=j′ ‖pj − pj′‖ reaches
its minimum on the compact set P . Suppose, this minimum is 0. Then there
exist p ∈ P , pj ∈ νj such that pj = pj′ for all 1 ≤ j, j′ ≤ k, that is,
p1 = = pk ∈

⋂k
j=1 νj = ∅, and we obtain a contradiction. Hence (4) is

satisfied.
Since the set M ′ is infinite, there exists an element x ∈ M ′ located at a

distance D > r/d from the set A. Since the cell x has the locators ν1, ..., νk
active, there exist elements y1, ..., yk ∈ A such that vj = yj − x ∈ νj . Put

51

pj =
vj
‖vj‖ . Then for any 1 ≤ i, j ≤ k the following holds:

‖pi − pj‖2 = ‖pi‖2 + ‖pj‖2 − 2(pi, pj) = 2− 2
(vi, vj)

‖vi‖‖vj‖
≤

≤ ‖vi‖‖vj‖
+
‖vj‖
‖vi‖

− 2
(vi, vj)

‖vi‖‖vj‖
=
‖vi − vj‖2
‖vi‖‖vj‖

≤

≤ ‖vi − vj‖
2

D2
=
‖yi − yj‖2

D2
≤ r2

D2
< d2.

Thus, max1≤i,j≤k ‖pi − pj‖ < d. On the other hand, pj ∈ νj ∩ S, that is,
p = (p1, ..., pk) ∈ P which contradicts (4). Hence, our assumption is wrong,
and the state Φ(s) is finite which completes the proof.

4.2. Class with simple physical implementation

It is most natural to imagine the implementation of a CA with locators as
a chip. The broadcasting should be implemented by some device that “sums
up” an unlimited number of electrical signals. Such a device can consist of the
following elements: a conductor connected to all cell outputs to be summed;
an amplifier with the input connected to the conductor and output connected
to the locator inputs of all the cells. Thus, if one of the cells emits a signal,
this signal will be amplified and signal 1 will come to the locators of all cells.
If all the cells emit 0, then 0 will come to the locators of all cells as well. In
such a way we can implement the operation max from an unlimited number
of arguments taking values from the set {0, 1}.

However, for a CA with locators, it is required to be able to calculate
maxi 6=j aj for all i = 1, ...,m. Note that

max
j 6=i

aj = min
(∑

j 6=i
aj , 1

)
= min

(
min

(m∑

j=1

aj , 2
)
− ai, 1

)
.

it is also possible to implement operation M2(a1, ..., an) = min(
∑m

j=1, 2),
but more difficult than the operation max. For example, this can be done as
follows. Each input representing an operation argument equal to 1 outputs
a limited current to the wire connecting all the arguments and connected
to the neutral wire through a resistor. Depending on the number of inputs
equal to 1, there would be different voltages on the connecting conductor.
The conductor itself can be connected to two comparators, of which one
is triggered at voltage when at least one input is active, and the other is
triggered when at voltage when at least 2 inputs are active. Using the results
of these comparators, it is easy to obtain the value of the functionM2. Then,
through the common wire, we can connect the result s = M2(a1, ..., am) back

52

to all cells, and calculate min(s − ai, 1) in the i-th cell. Thus, the result in
i-th cell is maxj 6=i aj as required.

Using n copies of such a circuit, we can implement the Max operation on
the set {0, 1}n, which is a component-wise max operation:

Max((a1
1, ..., a

1
n), · · · , (am1 , ..., amn)) = (max(a1

1, ..., a
m
1), · · · ,max(a1

n, ..., a
m
n)).

Let show that arbitrary idempotent commutative monoid (E,+) where
|E| = n < ∞ can be implemented using operation Max and ordinary
logic gates. To do this, we encode nonzero elements of E by the tuples
(1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, ..., 0, 1) ∈ {0, 1}n−1, and we encode 0 ∈ E
by the all-zero tuple. Let v be the described encoding function. For the set
E′ = {e1, ..., em} ⊆ E, we define v̂(E′) = Maxe∈E′ v(e). In the tuple v̂(E′)
ones occur at positions corresponding to nonzero elements of the set E′.
Boolean operator F : v̂(E′) 7→ v(

∑
e∈E′ e) can be implemented by a logic

circuit. Using the idempotency of the monoid, for an arbitrary number of
arguments we have

v
(∑

i∈I
ei

)
= v
(∑

e∈{ei|i∈I}
e
)

= F (v̂({ei | i ∈ I})) = F (Max
i∈I

v(ei)).

So, we proved that for any finite idempotent monoid it is possible to
implement its semigroup operation from an unlimited number of elements
using a fixed logic circuit and several conductors connected to all cells whose
outputs are summed up.

This is exactly the class of monoids from Section 4.1.1, for which the
global transition function is defined everywhere. The situation with the
implementation of locators is worse. The conductor conducts in the same
way in all directions. If we use diodes that pass current only in one direction,
the depth of the circuit will immediately become linear in the number of
arguments, and in this case, it is no longer possible to say that the broadcast
is instant, thus the goal of using this model is lost. Therefore, only solid angles
coinciding with subspaces can be implemented by the described method. For
example, Ω is implemented if the outputs of all cells are connected with a
plate. We can make a layer with many wires going in the same direction.
Thus we can implement the locator {v,−v}, where v is the direction of the
wires in this layer.

Implementation of other locators requires the use of some other physical
principles that go beyond conventional circuit design.

References
[1] E.E. Gasanov, “Celluar automata with locators”, Intelligent systems. Theory

and applications, 24:2 (2020), 121–133.

53

54

The complexity of multilayer d-dimensional
circuits 1

T.R. Sitdikov2, G. V. Kalachev3

In this paper we research a model of multilayer circuits with a single
logical layer. We consider λ-separable graphs as a support for circuits.
We establish the Shannon function lower bound max

(
2n

n ,
2n(1−λ)
log k

)
for

this type of circuits where k is the number of layers. For d-dimensional
graphs, which are λ-separable for λ = d−1

d , this gives the Shannon
function lower bound 2n

min(n,d log k) . For multidimensional rectangular
circuits the proved lower bound asymptotically matches to the upper
bound.

Keywords: multilayer circuits, multidimensional circuits, Shannon
function asymptotics, circuit complexity, graph separators.

1. Introduction

The problem of designing circuits which compute Boolean functions and are
optimal or suboptimal in some sense appeared in the middle of the 20th
century due to the rapid development of computer technology. One of the
most intensive studied circuit models since the 1950s is Boolean circuits. The
number of gates (also size or complexity) is a natural complexity measure for
Boolean circuits. One may define the complexity of a Boolean function as the
minimal size of a Boolean circuit computing the function. Muller [22] showed
that the size of every Boolean function of n variables does not exceed O

(
2n

n

)
.

Lupanov [19] proved that the complexity of almost all Boolean functions over
the standard basis {∨,&,¬} is asymptotically equal to 2n

n . Also Lupanov
obtained asymptotic bound for the complexity of Boolean functions with
respect to any finite basis.

In practice when designing Boolean circuits one must take into account
several factors including placement of gates, wiring and others. Models of
Boolean circuits considering these factors to some extent were studied in
some papers appeared since the 1960s. Korshunov [15] obtained size bounds
for Boolean circuits embedded in a 3-dimensional space with lower-bounded

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25, No.
2, 131-154 (in Russian).

2Sitdikov Timur Rashidovich — Software Engineer, Google LLC, e-mail:
s7t1r9@gmail.com.

3Kalachev Gleb Vyacheslavovich — Candidate of Physical and Mathematical Sciences,
Junior Researcher, Lomonosov Moscow State University, Faculty of Mechanics and
Mathematics, Problems of Theorecical Cybernetics Lab, e-mail: gleb.kalachev@yandex.ru.

55

distances between gates, lower-bounded distances between wires and upper-
bounded lengths of wires. Kravtsov [17] considered Boolean circuits with
gates placed in cells of a rectangular grid and proved the order of 2n for
the Shannon function. McColl [20] obtained Shannon function lower bound
Ω(2n) for planar circuits.

Models of cellular circuits similar to Kravtsov’s model were considered
in several more recent papers. Albrecht [1] showed that Shannon function
asymptotics for cellular circuits has a form c · 2n, where c is a constant
dependent on a basis. Gribok [8] obtained Shannon function asymptotics
to 2n for a special basis of cellular elements. The connection between size
and other complexity measures for cellular circuits also has been examined.
Cheremisin [4] showed that it is impossible to design a cellular circuit of
optimal size and activity simultaneously for a binary decoder. Kalachev [9, 10,
11, 12, 13] researched simultaneous minimization of a size, depth and activity
for cellular circuits. Efimov [5, 6] examined potential of three-dimensional
cellular circuits.

VLSI circuits are one of the closest to practice circuit models. In VLSI
circuits length of wires define the signal propagation time between gates.
VLSI circuits have been studied in a number of papers and books (Thompson
[27], Ullman [28]). Kramer and van Leeuwen [16] researched simultaneous
minimization of size (area) and period.

Another direction of research is studying connections between complexity
measures for different circuit models. Savage [23, 24] examined the connection
between VLSI circuits and planar circuits. Shkalikova [25] showed a relation
between the area of flat circuits and the volume of three-dimensional circuits.

The bounds of size proved for the mentioned above circuit models are
above Lupanov’s bound 2n

n for Boolean circuits size. One of the reasons for
this difference is that it’s impossible to conduct arbitrary number of wires
between gates under spatial constraints. If Boolean circuits are embedded into
a graph (e.g. rectangular grid), the number of wires that can be conducted
between fragments of the graph is naturally bounded by the size of edge
separator in the graph.

In this paper we examine the relation between Shannon function and
separability properties of the graph where Boolean circuits are embedded.
We consider embeddings with constraints from [26]:

• No more than 1 non-identity gate of a Boolean circuit can be embedded
into any vertex of a graph.

• No more than k wires of a Boolean circuit can be embedded into any
edge of a graph.

The main result of this paper is the lower bound of Shannon function for
graphs with a separator of size O(pλ), where p is the order of a graph and

56

0 < λ < 1. We call such graphs as λ-separable. We also show that the proved
lower bound is applicable to circuits embedded into a space with two or more
dimensions. Given the Shannon function upper bound for multidimensional
rectangular circuits [26], we obtain the Shannon function asymptotics for this
model of circuits.

2. Key definitions and results

2.1. Multilayer circuits

The model of multilayer circuits with a single logical layer was introduced in
[26]. Let us briefly summarize key definitions.

According to [3, p. 148], a Boolean circuit in a basis B is a labeled directed
acyclic graph. The labeling of vertices defines which vertices are inputs or
outputs. It also maps all non-input vertices to Boolean functions from the
basis B. Edges (wires) of a Boolean circuit are labeled by integers, and for
each vertex the labeling of its input edges defines the order of arguments for
the Boolean function mapped to the vertex.

A support is a nonempty graph with a finite or countable number of
vertices. In general a support may contain multiple edges or self-loops.

An embedding of a Boolean circuit S into a support T is a homomorphism
h : S → T .

A circuit with a support T is a pair (S, h) where S is a Boolean circuit and
h is an embedding of S into T . We use the term “circuit” instead of “circuit
with a support” for brevity where it would not cause a misreading. A circuit
(S, h) computes a Boolean function f if a Boolean circuit S computes f .

In practical terms these definitions may be interpreted as follows. One
of the problems in VLSI design is an embedding of gates and wires into a
plate. The plate may be considered as a graph, i. e. as a support for Boolean
circuits.

Usually there are various constraints on embeddings in circuit design
problems. In this paper we consider the following constraints.

Constraint 1. Any vertex of a support may contain no more than 1 gate
computing non-identity Boolean function.

Constraint 2. Any edge of a support may contain no more than k wires of
a Boolean circuit.

These constraints may be interpreted as follows. A circuit consists of k
“layers” where only one layer is “logical” (i. e. may contain gates computing
non-identity Boolean functions). The remaining layers are used only for
wiring. Therefore we call the circuits under constraints 1–2 as multilayer
circuits.

57

Let us denote by MT
k the set of all k-layer circuits with a support T .

The complexity of a multilayer circuit is the number of support vertices
used in the corresponding embedding. If M is a set of multilayer circuits
and f is a Boolean function, one may naturally define the complexity of
the function f in the set M as the minimal complexity of a circuit from
M computing f . If no such a circuit exists in M , we may formally consider
infinity as the complexity of f . Let us denote the complexity of the function
f in the set M as L(M,f).

One may naturally define the Shannon function of the complexity of k-
layer circuits with the support T :

L(MT
k , n) = max

f∈Bn
L(MT

k , f).

2.2. Supports

The properties of a support are crucial for embeddings, as under the same
constraints in general different supports admit different sets of embeddings.
In this paper we consider λ-separable graphs as supports. We also consider
d-dimensional graphs as an important special case of λ-separable graphs.

A class G of graphs is monotone if every subgraph of a graph in G also
belongs to G.

2.2.1. Classes of graphs G(q, θ) and G(λ, q, θ)

Let q ∈ N and θ > 1 be some constants. Let us define class of graphs G(q, θ)
as the set of all supports with the following properties:

• Degree of each vertex in T is bounded by q.

• For any integer p the number of different non-isomorphic subgraphs of
T with p vertices does not exceed θp.

The first property (bounding for vertex degree) is a natural limitation for
circuit design problems. The second property is met for several important
categories of graphs, including planar graphs [2] and d-dimensional graphs
defined below.

The formal definition of λ-separability is considered in the section 3.
Substantively each subgraph of a λ-separable support can be split into smaller
fragments by removing O(pλ) vertices (edges), where p is the number of
vertices in the subgraph and 0 < λ < 1.

We denote the subclass of λ-separable supports from G(q, θ) as G(λ, q, θ).

58

2.2.2. d-dimensional graphs

Let d ≥ 2 be an integer. A support T is a d-dimensional graph, if there are
constants cv > 0, ce > 0 such that T can be embedded into d-dimensional
Euclidean space with pairwise distances between vertices no less than cv and
edge lengths no greater than ce.

Remark 1. The constraints in the definition of d-dimensional graphs are
similar to the constraints in the definition of circuits with volumetric gates
from Korshunov’s paper [15].

Remark 2. We can always assume that one of the constants cv and ce is
equal to 1. Below we assume that cv = 1.

Remark 3. It’s clear that every finite support is a d-dimensional graph with
a great enough value of ce. Therefore the definition of d-dimensional graphs is
senseless for finite supports. However one may define a class of d-dimensional
graphs with a parameter ce, where the constant ce is common for all graphs in
the class. It’s obvious that such a class is a monotone class of graphs. Below
we omit the constant ce and speak about a d-dimensional class of graphs in
cases when the value of ce is not important.

Example 1. The graph of a d-dimensional grid is a d-dimensional graph.
It’s sufficient to consider ce = 1.

Example 2. One can prove that the graph of an infinite binary tree is not
d-dimensional for any d. Indeed, the number of vertices at distance p from
the root depends on p exponentially, though the number of d-dimensional
balls with radii 1 that can be placed into a ball with radii ce · d is O(pd).

Embedding of Boolean circuits into d-dimensional grid was considered in
[26]. As in that paper, we use the term multidimensional rectangular circuits
for such circuits and use the notation Md

k instead of MZd
k .

In section 5 we prove that all d-dimensional supports belong to classes
G(λ, q, θ) for λ = d−1

d and some values of q and θ.

2.3. Other designations and agreements

The expression log a always denotes a base two logarithm of a. We formally
assume that x log x = 0 for x = 0.

We denote by Bn,m the set of Boolean functions with n inputs and m
outputs (n ≥ 0, m ≥ 1).

The expression f(x) . g(x) corresponds to the inequality limx→∞
f(x)
g(x) ≤

1. Similarly we use the expression f(x) & g(x). We may use a complex
condition when passing to a limit, e. g. f(n, k) . g(n, k) as k →∞, log k ≤ n.

59

2.4. Results

In this paper for every support T ∈ G(λ, q, θ) we prove that

L(MT
k , n) & max

(
2n

n
,
2n(1− λ)

log k

)
as k →∞, n→∞.

It is also proved that every d-dimensional support belongs to the class
G(λ, q, θ) for λ = d−1

d and some constants q and θ. Therefore the following
lower bound holds for for d-dimensional supports:

L(MT
k , n) & 2n

min(n, d log k)
as k →∞, n→∞.

An upper bound of Shannon function for multidimensional rectangular
circuits matching the lower bound above was proved in [26]. Thus we have the
asymptotics of Shannon function for multidimensional rectangular circuits:

L(Md
k , n) ∼ 2n

min(n, d log k)
as k →∞, n→∞.

2.5. The structure of the paper

In this paper all the proofs are divided into three sections.
Section 3 contains definitions related to graph separators. The main result

of the section is lemma 2. The point of the lemma is that λ-separable graphs
supporting “good” (in some sense) partitioning into two parts also support
“good” partitioning into many parts.

Section 4 contains the proof of the lower bound for Shannon function
of the complexity for supports from classes G(λ, q, θ). The key part of this
section is lemma 7.

Section 5 is devoted to the proof of the lower bound for Shannon function
for d-dimensional supports. The section also contains the asymptotics of
Shannon function for multidimensional rectangular circuits as a corollary.
Essentially it’s proved that every d-dimensional support belongs to a class
G(λ, q, θ) for λ = d−1

d and some constants q and θ.

3. Graph separators and their properties

3.1. Definitions and the simplest properties of separators

In this section we provide the definitions of edge and vertex separators in
graphs and prove some of the simplest properties of separators.

60

Edge separators. We define edge separators similarly to the definitions
of vertex separators from [18].

Definition 1. Let f : N → R be a function. A monotone class of graphs G
is edge f(p)-separable if there exist constants 1

2 ≤ α < 1, β ≥ 0, m ≥ 2
such that any graph G ∈ G with p vertices (p ≥ m) can be split into two
subgraphs with no more than αp vertices each and no more than βf(p) edges
between the subgraphs.

Remark 4. The constant m is technically important, since it allows not to
consider some corner cases. For example graph K1 cannot be split into two
nonempty subgraphs in principle, thus we may always assume that m ≥ 2.
In general m may be greater than 2.

Definition 2. Let f : N → R be a function. A support T is edge f(p)-
separable if the monotone class of all finite subgraphs of T is edge f(p)-
separable.

The interesting case is when f(p) is a slowly growing function. Essentially
this allows to use the divide-and-conquer technique for obtaining effective
algorithms and non-trivial lower bounds in proofs. In this paper we consider
the function pλ with 0 < λ < 1 as f(p). We also call edge pλ-separable
supports and monotone classes of graphs as edge λ-separable.

Vertex separators. The following definition of a vertex separator is a
modification of definition 2.1 from [21] applied to monotone classes of graphs.

Definition 3. Let f : N→ R be a function. A monotone class of graphs G is
vertex f(p)-separable if there exist constants 1

2 ≤ α < 1, β ≥ 0, m ≥ 2 such
that for any graph G ∈ G with p vertices (p ≥ m) there exists a partition of
V (G) into three parts A, B, C satisfying the following conditions:

• There are no edges from A to B.

• |A|, |B| ≤ αp.

• |C| ≤ βf(p).

It’s obvious that for any monotone class of graphs edge f(p)-separability
implies vertex f(p)-separability, as one may consider endpoints of an edge
separator as a vertex separator. The converse is not always true. For example,
the class of stars K1,p and their subgraphs is vertex 1-separable, but is not
edge 1-separable.

The following simple lemma shows that vertex f(p)-separability implies
edge f(p)-separability for monotone classes of graphs with bounded vertex
degree.

61

Lemma 1. Let G be a monotone class of vertex f(p)-separable graphs with the
parameters α, β, m where vertex degree of any graph is bounded by q. Then
G is edge f(p)-separable with parameters max

(
2
3 , α

)
, qβ and max(m, 2).

Proof. We’ll show how to obtain an edge separator from a vertex separator.
Let G ∈ G, where |V (G)| = p ≥ max(m, 2). By the definition of vertex

separability V (G) can be divided into three sets A,B,C, where C is a
separator. Here |A|, |B| ≤ αp, |C| ≤ βf(p).

Let us move vertices from C to A and B in a way to keep the sizes of
the resulting sets as close to each other as possible. We denote the resulting
sets by A′ and B′. Considering the way of constructing A′ and B′, we obtain
1 ≤ |A′|, |B′| ≤ max

(
2
3 , α

)
· p.

Each edge connecting A′ and B′ is incident to at least one vertex from
C. Since vertex degree is bounded by q, the total number of such edges does
not exceed q|C| ≤ qβf(p).

Since values max
(
2
3 , α

)
, qβ and max(m, 2) do not depend on a graph,

edge f(p)-separability of G is proved.

Thereby when we define a class G(λ, q, θ) it does not matter whether we
use edge λ-separability or vertex λ-separability, as all graphs from the class
have vertex degree bounded by q.

3.2. Partitioning of λ-separable graphs

Informally the key result of this section is the following statement. Since a
λ-separable graph can be split into two disconnected parts of comparable size
by removing a small number of edges, the graph can also be split into many
disconnected parts of bounded size by removing a small number of edges.

The following lemma is the modification of lemma 1 from [7] for planar
graphs.

Lemma 2. Let G be a monotone class of edge λ-separable graphs with the
parameters α, β and m, where 0 < λ < 1, 1

2 ≤ α < 1, β ≥ 0, m ≥ 2. Then
for each r ≥ m − 1 and for each graph G ∈ G with p vertices there exists
partition of G into subgraphs such that

• The number of vertices in each subgraph does not exceed r.

• The total number of edges between subgraphs does not exceed δprλ

r , where
δ is a constant common for all graphs of the class and for all values of
r.

We call the corresponding partition of the graph as rλ-partition.

62

Proof. The proof of the lemma is similar to the proof of lemma 1 from [7].
We provide the detailed version of the proof for completeness.

Let r ≥ m − 1, G ∈ G, |V (G)| = p. If p ≤ r, then the trivial partition
containing a single graph G suffices.

Let p > r. By the definition of edge λ-separability graph G can be
partitioned into two subgraphs A and B with no more than αp vertices each
and no more than βpλ mutually connecting edges. Since G is a monotone
class, A,B ∈ G. Thus both A and B can be similarly partitioned into two
subgraphs. Let us recursively partition all the subgraphs until we have only
pieces with no more than r vertices.

Let us prove that the obtained partition is a rλ-partition.
The constraint on the number of vertices in subgraphs (no more than r

vertices per subgraph) is satisfied by the algorithm of partitioning.
Let X be the total number of edges deleted during the algorithm. We

prove an upper bound for X. Let us split all subgraphs partitioned at any
step of the algorithm into sets Gi depending on the size of a subgraph. We
include into G1 subgraphs with a size from a half-open interval (r, rα−1].
Similarly we include into G2 subgraphs with a size from a half-open interval
(rα−1, rα−2], and so on. If t = dlogα

r
pe, the last set Gt includes subgraphs

with a size from (rα−(t−1), rα−t].
Let 1 ≤ i ≤ t. Consider the set Gi. Note that vertex sets of distinct

subgraphs from Gi do not intersect, since the ratio of sizes of such subgraphs
is less than α. Therefore the total size of all subgraphs in Gi does not exceed
p. Hence |Gi| ≤ p

r · αi−1. At the same time the total number of edges deleted
when partitioning a graph from Gi does not exceed β(r/αi)λ.

By summing over all subgraphs from sets Gi we obtain

X ≤ β
t∑

i=1

αi−1p
r

(r
αi

)λ
≤ β

αλ(1− α1−λ)
· pr

λ

r
.

This matches the constraint on the number of edges mutually connecting
subgraphs of a rλ-partition.

We use the following auxiliary notation below. Let M,S > 0. We denote
by K(M,S) the number of tuples (x1, . . . , xt) satisfying the condition

1 ≤ xi ≤M,

t∑

i=1

xi ≤ S. (1)

If G is a monotone λ-separable class of graphs with vertex degree bounded
by q, the properties of rλ-partition may be stated as follows. Let p̄ = {pi}ti=1

be a tuple of sizes of rλ-partition subgraphs, and let s̄ = {si}ti=1 be a tuple

63

of numbers of edges connecting rλ-partition subgraphs with the rest of the
graph. Then

p̄ ∈ K(r, p), s̄ ∈ K
(
qr,

δprλ

r

)
. (2)

4. Lower bound for λ-separable supports

In this section we prove the key result of this paper namely a theorem on the
lower bound for all supports from classes G(λ, q, θ).

L(MT
k , n) & max

(
2n

n
,
2n(1− λ)

log k

)
.

Note that the lower bound depends only on the separability function.
Parameters q and θ do not affect the lower bound.

Substantively the proof is obtained in the following way. We partition a
subgraph of a support into small fragments. Then we bound the number of
Boolean functions computable in the subgraph by the number of Boolean
functions computable in the fragments and the number of ways to conduct
wires between the fragments.

Since the proof is technically involved we prove several auxiliary lemmas
in a separate section 4.1. The proof of the main theorem is finished in section
4.2.

4.1. Auxiliary lemmas

The following lemma is an immediate corollary of a classic lemma [3].

Lemma 3 ([3], p. 198). Let N(n,m,L) be the number of Boolean functions
with no more than n inputs, no more than m outputs and the complexity not
greater than L. Then there exists a constant c such that

N(n,m,L) ≤
(
c(n+ L)

)n+m+L
.

We use rλ-partitioning of support subgraphs to obtain the lower bound.
Technical lemma 4 bounds the number of Boolean operators computable in
fragments of a rλ-partition.

Let p and s be positive integers. We denote by Z(p, s) the number of
Boolean functions with no more than s inputs and outputs in total and the
complexity not greater than p.

Recall the notation K(M,S) introduced in section 3 for sets of tuples
satisfying conditions (1). When proving lemma 4 we use the following simple
property:

If x̄ = {xi}ti=1 ∈ K(M,S), then
t∑

i=1

xi log xi ≤ S logM. (3)

64

We also use the following inequality for non-negative x and y:

(x+ y) log(x+ y) ≤ x log x+ y log y + x+ y, (4)

which under the assumption 0 log 0 = 0 is a corollary of the binary entropy
bound −a log a− (1− a) log(1− a) ≤ 1 for a = x

x+y .

Lemma 4. Let q ≥ 1, b ≥ 0, d > 0 be constants and let k → ∞ be a
parameter. Denote r = (k log k)d. Let L, M be numbers and p̄ = {pi}ti=1,
s̄ = {si}ti=1, ū = {ui}ti=1 be tuples satisfying the following conditions:

p̄ ∈ K(r, L), s̄ ∈ K
(
qkr,

bL

log k

)
, ui ≥ 0,

t∑

i=1

ui ≤M. (5)

Then
t∑

i=1

logZ(pi, si+ui) ≤ d
(

1+O

(
log log k

log k

))
L log k+M logM+O(M). (6)

Proof. Using lemma 3, we have

Z(pi, si + ui) ≤
(
c(pi + si + ui)

)pi+si+ui .
Taking the logarithm and summing by all tuple elements, we obtain

t∑

i=1

logZ(pi, si + ui) ≤
t∑

i=1

(pi + si + ui)(log c+ log(pi + si + ui)). (7)

Using twice (4), then (3) with (5), we bound the right side of (7):
t∑

i=1

(pi + si + ui)(log c+ log(pi + si + ui)) ≤

≤
t∑

i=1

(pi log pi + si log si + ui log ui + (pi + si + ui)(log c+ 2)) ≤

≤ L log r +
bL

log k
log(qkr)︸ ︷︷ ︸
O(log k)

+M logM + (log c+ 2)

(
L+

bL

log k
+M

)

︸ ︷︷ ︸
O(L+M)

=

= L log r +M logM +O(L+M).

Substituting the bound into (7), we obtain
t∑

i=1

logZ(pi, si + ui) ≤ L log r +M logM +O(L+M) =

= Ld(log k + log log k) +M logM +O(L+M) =

=

(
1 +O

(
log log k

log k

))
Ld log k +M logM +O(M).

65

The following two lemmas allow to obtain a trivial lower bound for
Shannon function for circuits with an arbitrary support.

Lemma 5 ([3], theorem 11.5). For each constant ε > 0 the ratio of Boolean
functions of n variables satisfying the inequality

L(f) ≥ (1− ε)2n

n

approaches 1 as n→∞.

Lemma 6. Let T be an arbitrary support, k ∈ N, n→∞. Then

L(MT
k , n) & 2n

n
.

Proof. The lemma is an immediate corollary of lemma 5 and the fact that the
complexity of a multilayer circuit is not less than the size of the corresponding
Boolean circuit.

4.2. The lower bound theorem

In this section we finish the proof of lower asymptotic bound for L(MT
k , n),

where T ∈ G(λ, q, θ). We also prove a corollary allowing to obtain a lower
bound for supports having separability function of more general type, e. g.
log p, √p log log p, etc.

Lemma 7. Let T ∈ G(λ, q, θ). Let NT
k (n,m,L) be the number of Boolean

functions in Bn,m computable by k-layer circuits in T with size not greater
than L. Then as k →∞, the following inequality holds:

logNT
k (n,m,L) ≤ L log k

1− λ

(
1 +O

(
log log k

log k

))
+

+ (n+m)
(
logL+ log(n+m)

)
+O(n+m).

Proof. Let us denote r = (k log k)
1

1−λ . We consider only great enough values
of k to suffice the conditions on r from lemma 2. Thus every finite subgraph
G of the support T has a rλ-partition which we denote by P (G).

We can build a mapping between k-layer circuits of size not greater than
L computing a Boolean function in Bn,m and tuples of the following objects:

1) Subgraph G of the support where we embed the corresponding Boolean
circuit.

66

2) A tuple v̄ of vertices of G where we embed inputs and outputs of the
Boolean circuit.

3) A set of directed wires between fragments of P (G).

4) A tuple of Boolean functions computed in fragments of P (G).

It is easy to see that circuits computing different Boolean functions are
mapped to different tuples. Thus we can bound the number of Boolean
functions by the number of possible tuples. Obviously we can bound the
number of elements per each tuple item and find the product of the bounds.

Denote the corresponding upper bounds as A1, A2, A3, A4, where the
correspondence is defined by the order of items above.

As T ∈ G(λ, q, θ), we have

A1 ≤ θ + θ2 + · · ·+ θL ≤ θL+1

θ − 1
.

Let us bound A2. Obviously there exist Ln+m tuples of n+m vertices of
G. Hence A2 ≤ Ln+m.

The number of edges between the fragments of the rλ-partition P (G) is
bounded by δLrλ

r = δL
k log k , where δ is a constant. In each of these edges we

can conduct no more than k wires. Thus there can be no more than δL
log k

wires mutually connecting the fragments of P (G). For each of these wires
there are three options: directed in one way, directed in the opposite way
and missed. Therefore

A3 ≤ 3
δL

log k .

We introduce the following notation to obtain the bound for A4. Let Gi
be the fragments of P (G), t be the number of the fragments, pi be the number
of vertices in i-th fragment, si be the number of wires that can be conducted
outside from Gi, and ui be the total number of inputs and outputs of the
Boolean circuit embedded into Gi (i. e. the number of items in the tuple v̄
corresponding to the vertices of Gi). It’s clear that each Boolean function
computable in Gi must have no more than pi gates and no more than si +ui
inputs and outputs in total. Hence the following inequality holds:

A4 ≤
t∏

i=1

Z(pi, si + ui).

By multiplying the bounds for Ai we obtain

NT
k (n,m,L) ≤ θL+1

θ − 1
· Ln+m · 3

δL
log k ·

t∏

i=1

Z(pi, si + ui).

67

Taking the logarithm and omitting the negative addend be obtain

logNT
k (n,m,L) ≤ (L+ 1) log θ︸ ︷︷ ︸

O(L)

+(n+m) logL+

+
δL

log k
log 3

︸ ︷︷ ︸
o(L)

+

t∑

i=1

logZ(pi, si + ui). (8)

Let us bound the sum
∑t

i=1 logZ(pi, si + ui) in the right side of (8). We
claim that we can apply lemma 4.

We obtain the following conditions for tuples p̄ = {pi}ti=1, s̄ = {si}ti=1 by
using (2): p̄ ∈ K(r, L), s̄ ∈ K

(
qkr, δL

log k

)
. For tuple ū = {ui}ti=1 it’s obvious

that ui ≥ 0,
∑t

i=1 ui ≤ n+m. Finally we have q ≥ 1, δ ≥ 0, 1
1−λ > 0, k →∞

and r = (k log k)
1

1−λ . Thus all conditions of lemma 4 are satisfied. Hence

t∑

i=1

logZ(pi, si + ui) ≤
L log k

1− λ

(
1 +O

(
log log k

log k

))
+

+ (n+m) log(n+m) +O(n+m).

Combining the bounds for addends in the right side of (8), we obtain

logNT
k (n,m,L) ≤ L log k

1− λ

(
1 +O

(
log log k

log k

))
+

+ (n+m)
(
logL+ log(n+m)

)
+O(n+m).

In this paper we are interested in the case when n+m is small compared
to L. In this case we can simplify the inequality in lemma 7.

Corollary 1. Under the conditions of lemma 7, if k → ∞ and n + m ≤
L/ logL, then

logNT
k (n,m,L) ≤ L log k

1− λ

(
1 +O

(
log log k

log k

))
.

Lemma 8. Let T ∈ G(λ, q, θ), k →∞, n→∞. Then

L(MT
k , n) ≥ 2n(1− λ)

log k

(
1 +O

(
log log k

log k

))
.

68

Proof. It follows from lemma 6 that for great enough values of n and any k
the inequality below holds:

L(MT
k , n) ≥ 1

2
· 2n

n
. (9)

Let k → ∞, n → ∞. We denote L = L(MT
k , n) for brevity. Using the

term NT
k (n,m,L) defined in lemma 7, we obtain the identity

NT
k (n, 1, L) = 22

n
.

It follows from (9) that n = O(logL) = o(L/ logL). By applying corollary
1 of lemma 7 we obtain

2n ≤ L log k

1− λ

(
1 +O

(
log log k

log k

))
.

This implies the claim of the lemma.

Theorem 1. Let 0 < λ < 1, T ∈ G(λ, q, θ). Then

L(MT
k , n) & max

(
2n

n
,
2n(1− λ)

log k

)
as k →∞, n→∞.

Proof. It follows from lemmas 6 and 8.

Hereby we obtained the lower bound for λ-separable supports, i. e. for
supports with separability function like pλ. Using theorem 1 one can obtain
lower bound for supports with separability function like log p, √p log log p,
etc.

Corollary 2. Let 0 ≤ λ0 < 1, f(p) = O(pλ) for all λ > λ0. Let T ∈ G(q, θ)
be a f(p)-separable support. Then

L(MT
k , n) & max

(
2n

n
,
2n(1− λ0)

log k

)
as k →∞, n→∞. (10)

Proof. Let λ > λ0. It’s clear that T is pλ-separable. From theorem 1 we have
L(MT

k , n) & max
(
2n

n ,
2n(1−λ)
log k

)
as k →∞, n→∞.

Let us denote g(λ, k, n) = max
(
2n

n ,
2n(1−λ)
log k

)
. We have

lim inf
k→∞
n→∞

L(MT
k , n)

g(λ, k, n)
≥ 1 as λ0 < λ < 1.

69

It’s easy to see that g(λ,k,n)
g(λ0,k,n)

≥ 1−λ
1−λ0 , therefore

A := lim inf
k→∞
n→∞

L(MT
k , n)

g(λ0, k, n)
≥ lim inf

k→∞
n→∞

1− λ
1− λ0

· L(MT
k , n)

g(λ, k, n)
≥ 1− λ

1− λ0

for all λ0 < λ < 1.
Hence A ≥ sup

1>λ>λ0

1−λ
1−λ0 = 1. The latter implies (10).

5. Lower bound for d-dimensional circuits

In this section we obtain the lower bound for d-dimensional circuits and the
asymptotics for d-dimensional rectangular circuits. In substance the lower
bound for d-dimensional circuits is a corollary for the lower bound for λ-
separable supports, since we prove that all d-dimensional supports belong to
classes G(λ, q, θ).

5.1. Properties of d-dimensional graphs

Essentially we have to prove that d-dimensional graphs have three properties:
bounded vertex degree, exponentially bounded number of non-isomorphic
subgraphs, and λ-separability.

Lemma 9. Let T be a d-dimensional support (accordingly let G be a class of
d-dimensional graphs) with a parameter ce. Then degree of any vertex in T
(accordingly in any graph from G) is bounded by (2ce + 1)d.

Proof. When placing arbitrary d-dimensional graph into d-dimensional space
the neighborhood of any vertex is placed into a ball of radii ce. Since d-
dimensional balls with radii 0.5 and centers in graph vertices do not intersect
and lie inside a ball with radii ce + 0.5, the number of such balls cannot
exceed the ratio of volumes of d-dimensional balls with radii ce + 0.5 and 0.5
respectively. This ratio is equal to (2ce + 1)d.

Lemma 10. Let T be a d-dimensional graph. Then the number of non-labeled
subgraphs of T with n vertices does not exceed θn, where θ is a constant.

Proof. Immediately follows from the remark to lemma 2 in [15].

We apply the results of [21] to prove λ-separability of d-dimensional
graphs.

Definition 4 ([21], definition 2.3). Let α ≥ 1 be given, and let B =
{B1, B2, . . . , Bp} be a set of closed d-dimensional balls with non-overlapping

70

interiors. The α-overlap graph for B is the undirected graph with vertices
V = {1, 2, . . . , p} and edges

E = {{i, j} : Bi ∩ (α ·Bj) 6= ∅ and (α ·Bi) ∩Bj 6= ∅},

where α ·Bj is a ball centered as Bj and having α times greater radii.

The following lemma shows the connection between d-dimensional graphs
and α-overlap graphs.

Lemma 11. Let G be a class of d-dimensional graphs with a parameter ce.
Then each graph in G can be supplemented by some number of edges (possibly
0) resulting to a 2ce-overlap graph in a d-dimensional space.

Proof. Let G ∈ G. Consider the placement of G into a d-dimensional space,
and let G′ be the 2ce-overlap graph for the balls of radii 0.5 and centers in
the vertices of G. Since the distance between centers of any two balls is not
less than 1, interiors of the balls do not intersect.

If there is an edge between two vertices in G, the distance between the
centers of the corresponding balls does not exceed ce. Therefore balls with
the same centers and radii 0.5 and 0.5 · 2ce = ce respectively would intersect.
Hence all edges of G are also edges of G′.

Lemma 12 ([21], theorem 2.4). Let d ≥ 1, α ≥ 1 be constants. Then there
exists a function

f(p) = O
(
α · p d−1

d + c(α, d)
)

such that each α-overlap graph in a d-dimensional space is vertex f(p)-
separable. The separator splits its parent graph into pieces with no more than
d+1
d+2 of the initial number of vertices.

Essentially lemma 12 claims d−1
d -separability of all α-overlap graphs in a

d-dimensional space.

Remark 5. In the source [21] lemma 12 was stated in a slightly different
way. Considering any α-overlap graph in d-dimensional space, it was claimed
that the graph has a separator of size bounded by O

(
α · p d−1

d + c(α, d)
)
.

Since the separability function is common for all graphs in a monotone class,
we modified the statement of the lemma in this paper to emphasize the
independence of the separability function from individual graphs.

Corollary 3. Let G be a class of d-dimensional graphs. Then G is p
d−1
d -

separable.

Proof. Immediately follows from lemmas 11 and 12.

71

5.2. Shannon function bounds

d-dimensional circuits. We apply the properties of d-dimensional graphs
proved in the previous section and obtain the lower bound for d-dimensional
circuits.

Theorem 2. Let T be a d-dimensional support. Then

L(MT
k , n) & 2n

min(n, d log k)
as k →∞, n→∞.

Proof. Immediately follows from theorem 1, lemmas 9, 10 and corollary 3.

Multidimensional rectangular circuits. Multidimensional rectangular
circuits are a special case of d-dimensional circuits, thus the lower bound
from theorem 2 is also applicable for these circuits.

An upper bound of Shannon function for multidimensional rectangular
circuits was proved in [26].

Lemma 13 ([26], theorem 1).

L(Md
k , n) . 2n

min(n, d log k)
as k →∞, n→∞.

Applying theorem 2 and lemma 13 we obtain the asymptotics of Shannon
function for multidimensional rectangular circuits.

Corollary 4.

L(Md
k , n) ∼ 2n

min(n, d log k)
as k →∞, n→∞.

6. Conclusion

In this paper we proved the lower bound for Shannon function L(MT
k , n) &

max
(
2n

n ,
2n(1−λ)
log k

)
for any support T from a class G(λ, q, θ). An important

special case of such supports are d-dimensional graphs for which thereby we
proved the lower bound L(MT

k , n) & 2n

min(n,d log k) .
A natural direction of developing the obtained results is examining classes

of graphs with a separability function different from pλ. For example, graphs
supporting a placement in a hyperbolic space are of interest. It was proved
in [14] that such graphs have logarithmic separability function. Corollary 2
of theorem 1 allows to obtain a lower bound for Shannon function for such
graphs. However the question about upper bounds remains open.

72

References
[1] A. Albrecht, “On circuits of cellular elements”, Problemi Kibernetiki, 33 (1978),

209–214 (in Russian).
[2] N. Bonichon, C. Gavoille, N. Hanusse, D. Poulalhon, G. Schaeffer, “Planar

Graphs, via Well-Orderly Maps and Trees”, Graphs and Combinatorics, 22
(2006), 185–202.

[3] A.V. Chashkin, Discrete Mathematics, Akademiya, Moscow, 2012 (in Rus-
sian), 352 pp.

[4] O.V. Cheremisin, “On the activity of cell circuits realising the system of all con-
junctions”, Discrete Mathematics, 15:2 (2003), 113–122 (in Russian); English
translation in Discrete Mathematics and Applications, 13:2 (2003), 209–219.

[5] A.A. Efimov, “The top assessment of energy consumption in a class of volume
schemes”, Intelligent Systems. Theory and Applications, 23:1 (2019), 117–132
(in Russian).

[6] A.A. Efimov, “The upper estimate of the volumetric power consumption of the
circuits that implement boolean operators.”, Intelligent Systems. Theory and
Applications, 23:2 (2019), 105–124 (in Russian).

[7] G.N. Frederickson, “Fast algorithms for shortest paths in planar graphs, with
applications”, SIAM Journal on Computing, 16:6 (1987), 1004–1022.

[8] S.V. Gribok, “On one base for circuits of cellular elements”, Vestnik
Moskovskogo Universiteta. Seriya 15: Vichislitelnaya matematika i kibernetika,
4 (1999), 36–39 (in Russian).

[9] G.V. Kalachev, “Order of power of planar circuits implementing Boolean
functions”, Discrete Mathematics, 26:1 (2014), 49–74 (in Russian); English
translation in Discrete Mathematics and Applications, 24:4 (2014), 185–205.

[10] G.V. Kalachev, “On the simultaneous minimization of area, power and depth
of planar circuits computing partial Boolean operators”, Intelligent Systems,
20:2 (2016), 203–266 (in Russian).

[11] G.V. Kalachev, “Bounds on power of planar circuits computing functions with
limited number of ones”, Intelligent Systems. Theory and Applications, 21:1
(2017), 28–96 (in Russian).

[12] G.V. Kalachev, “Bounds on power of planar circuits computing monotone func-
tions”, Intelligent Systems. Theory and Applications, 21:2 (2017), 163–192 (in
Russian).

[13] G.V. Kalachev, “On the lower bound for the maximum potential of plain cir-
cuits with several outputs through the area”, Intelligent Systems. Theory and
Applications, 22:1 (2018), 111–117 (in Russian).

[14] S. Kisfaludi-Bak, “Hyperbolic Intersection Graphs and (Quasi)-Polynomial
Time”, Proceedings of the Thirty-First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA ’20, Society for Industrial and Applied Mathematics,
USA, Utah, Salt Lake City, 2020, 1621–1638.

[15] A.D. Korshunov, “On the complexity bounds of circuits of volumetric elements
and volumetric Boolean circuits”, Problemi Kibernetiki, 19 (1967), 275–283 (in
Russian).

[16] M.R. Kramer, J. van Leeuwen, “The VLSI complexity of Boolean functions”,
Logic and Machines: Decision Problems and Complexity, eds. Börger E., Hasen-
jaeger G., Rödding D., Springer, Berlin, Heidelberg, 1984, 397–407.

73

[17] S. S. Kravtsov, “On the realization of Boolean functions in one class of logic
elements and connectors”, Problemi Kibernetiki, 19 (1967), 285–293 (in Rus-
sian).

[18] R. J. Lipton, R. E. Tarjan, “A separator theorem for planar graphs”, SIAM
Journal on Applied Mathematics, 36:2 (1979), 177–189.

[19] O.B. Lupanov, “On the synthesis of some classes of control systems”, Problemi
Kibernetiki, 10 (1963), 63–97 (in Russian).

[20] W.F. McColl, “Planar circuits have short specifications”, 2nd STACS. Lecture
Notes in Computer Science, 182 (1985), 231–242.

[21] G.L. Miller, S. Teng, W. Thurston, S.A. Vavasis, “Geometric separators for
finite-element meshes”, SIAM Journal on Scientific Computing, 19:2 (1998),
364–386.

[22] D.E. Muller, “Complexity in Electronic Switching Circuits”, IRE Transactions
on Electronic Computers, EC-5:1 (1956), 15–19.

[23] J. E. Savage, “Planar Circuit Complexity and The Performance of VLSI Algo-
rithms”, VLSI Systems and Computations, eds. Kung H.T., Sproull B., Steele
G., Springer, Berlin, Heidelberg, 1981, 61–68.

[24] J. E. Savage, “The performance of multilective VLSI algorithms”, Journal of
Computer and System Sciences, 29:2 (1984), 243–273.

[25] N.A. Shkalikova, “On the implementation of Boolean functions by schemes
of cellular elements”, Mathematical Problems of Cybernetics. V. 2, Nauka,
Moscow, 1989, 177–197 (in Russian).

[26] T.R. Sitdikov, “The complexity of multidimensional rectangular circuits de-
sign”, Intelligent Systems. Theory and Applications, 23:3 (2019), 61–80 (in
Russian).

[27] C.D. Thompson, “Area-Time Complexity for VLSI”, Proceedings of the
Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, Asso-
ciation for Computing Machinery, New York, NY, USA, 1979, 81–88.

[28] J.D. Ullman, Computational Aspects of VLSI, W. H. Freeman & Co, USA,
1984.

74

The two-dimensional closest neighbor
search problem solution using the cellular

automata with locators 1

D. I. Vasilev2

This article describes a cellular automaton with locators that
solves the problem of finding the nearest neighbour. The problem
is to find from a finite set of points the one closest to a
predetermined "central"point. In contrast to the classical model of a
cellular automaton, in the model under consideration, instantaneous
transmission of signals through the ether at an arbitrary distance is
allowed. It is shown that this possibility makes it possible to solve the
problem in constant time, which is strikingly different from the one-
dimensional case, where a logarithmic lower complexity estimate by the
minimal distance is obtained.

Keywords: cellular automata, homogeneous structures, the closest
neighbour search problem.

A cellular automaton with locators is a 8-tuple

σ = (Zk, En, V, Eq,+, L, ϕ, ψ)

where Zk is the set of k-dimensional vectors with integer coordinates,
En = {0, 1, . . . , n − 1}, V = (α1, . . . , αh−1) is an ordered set of pairwise
different nonzero vectors from Zk, Eq = {0, 1, . . . , q−1}, + is a commutative
semigroup operation defined on Eq, L = (ν1, . . . , νm) is an ordered set of
pairwise different solid angles in Rk with a vertex at the origin, ϕ : Ehn×Emq →
En is a function depending on the variables x0, x1, . . . , xh−1, z1, . . . , zm such
that ϕ(0, . . . , 0) = 0, ψ : Ehn × Emq → Eq is a function that depends on the
variables x0, x1, . . . , xh−1, z1, . . . , zm. Here the variables x0, x1, . . . , xh−1 take
values from En and the variables z1, . . . , zm take values from Eq. Elements
of the set Zk are called cells of the cellular automaton σ; elements of the
set En are called cell states of the cellular automaton σ; the set V is called
the neighborhood pattern of the cellular automaton σ; elements of the set Eq
are called broadcasting signals; the set L is called the locator pattern of the
cellular automaton σ; the function ϕ is called the local transition function
of the automaton σ; the function ψ is called the broadcasting function of

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25,
No. 4, 83-87 (in Russian).

2 Vasilev Denis Igorevich — junior researcher, Lomonosov Moscow State University,
Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intelligent
Systems, email: denis.vasilev.igor@gmail.com

75

the automaton σ. The state 0 is interpreted as rest state and the condition
ϕ(0, . . . , 0) = 0 is interpreted as a condition for maintaining the rest state.

This definition was introduced by Gasanov E.E. [1] and improved by
Kalachev G.V. [2].

Let’s formulate the closest neighbour search problem on the line. Let
the I be the initial state of a cellular automaton on Z1 which satisfies the
following conditions: a) Any cell is on one of {qS ; qC0 , ∗} states; b) There is
only one qC0 cell; c) There is a finite and non-empty set of qS cells.

We will define that a cellular automaton state I ′ is solution for the
problem I if I ′ satisfies the following conditions: a) The qC0 cell from I
is in qCF state in I ′; b) The cell which is the closest to the qC0 cell in I is in
the qSE state. If there are several closest cells then an arbitrary one must be
chosen; c) The rest cells are in ∗ state.

We define that cellular automaton σ solves the closest neighbour search
problem if it satisfies the following conditions: a) If the initial state I of the
cellular automaton is a closest neighbour search problem then the automaton
must end up in I ′ state which is solution for I; b) If the automaton takes
state S which is solution for some closest neighbour search problem this state
must be kept for all the next tacts.

Let’s call the general position of the closest neighbour search problem a
problem in which there is at least one cell in the state qS on both sides of
the cell in the state qC0 .

In the article [3], the theorem was proved for the one-dimensional case:

Theorem 1. There is a cellular automaton σ with 25 states and with the
power of the broadcasting alphabet 12, which solves the problem of finding the
closest neighbour in a time not exceeding log2 s + 7, where s is the distance
from the central cell with the initial state qC0 to its nearest neighbour with
the initial state qS.

An article with a similar lower complexity estimate was sent to the
editorial office of the Vestnik of the MSU journal:

Theorem 2. For any cellular automaton with locators σ with the power of
the broadcasting alphabetM and any general position of the nearest neighbour
search problem I, T σI > logM (s5) is performed, where s is the distance from
the cell in the state qC0 to the nearest cell in the state qS in the problem I,
and T σI is the number of the clock cycles for which the automaton σ solves
the problem I.

Thus, for the one-dimensional case of the nearest neighbour search
problem, the order of complexity of the problem is obtained.

It turned out that for the dimension n ≥ 2, similar estimates are incorrect,
since for such problems it was possible to build an automaton with locators

76

that solves them in constant time. Here is an example of such an automaton
for the case of n = 2:

Theorem 3. There is a cellular automaton σ with 15 states and with the
power of the broadcasting alphabet 40, which solves the two-dimensional
problem of finding the nearest neighbour in a time not exceeding 13.

Consider a cellular automaton with locators σ with a set of locators
consisting of locators from Fig. 1 and one expanded locator that reads
the sum of the signals of all cells of the cellular space. Let’s define the
broadcasting alphabet as a subset {0; 1}20 and a semigroup operation of
a component-by-component maximum on it. For convenience, we will denote
the cell signals by one or more numbers - the numbers of non-zero positions
in the ether signal. So the signal (0, 1, 0, 1, 0, ..., 0, 0, 0) we will record as a
pair of signals 2 and 4.

Fig. 1. Locators layout and names

Let’s define a coordinate system on the cellular space with the center in
the central cell. The central cell in the constructed automaton constantly
sends a 1 signal to the ether. Cells that receive such a signal from the R3
locator will realize that they are on the upper coordinate semi-axis. Similarly,
each cell can identify its location on the other three coordinate semi-axes.
The cells located on the semi-axes constantly send a signal to the ether with
the number of their semi-axis (upper — 2, right —3, lower —4 and left —
5). By these signals, each cell can recognize in which coordinate quarter it is
located. For example, having received the signal 2 from the locator R4 and
the signal 3 from the locator R3, it is possible to uniquely determine that the
cell in question is in the first coordinate quarter. The idea of functioning of
the constructed automaton is to project along the Manhattan circle all the
points from the problem on one semi-axis, find the projection closest to the
center, and then restore its prototype. For example, a point from the first
quarter can send a special signal that is read only by the right semi-axis. A
point from the right semi-axis, having received such a signal from the locator

77

D4, will understand that it is a projection of one of the points of the problem
(Fig. 2 on the left). By repeating this iteration 4 times, you can project all
the points onto the upper semi-axis (Fig. 2 on the right).

Fig. 2. On the left is an example of projecting a single point onto a semi-
axis. On the right, the progress of projecting the problem onto the upper
semi-axis.

To find the nearest neighbour on the upper semi-axis, it is enough for each
candidate to broadcast a special signal, and after receiving such a signal from
the R3 locator, he will withdraw (i.e., switch to the default state). After the
nearest projection is found, it is enough to restore its prototype by the reverse
course of the described algorithm.

References
[1] Gasanov E. E., “Cellular automata with locators”, Intelligent systems. Theory

and Applications, 20:2 (2020), 121–133 (In Russian).
[2] Kalachev G. V., “Remarks on the definition of a cellular automaton with

locators”, Intelligent systems. Theory and Applications, 24:4 (2020), 47–57 (In
Russian).

[3] Vasilev D. I., “The closest neighbour problem solution using the cellular
automata with locators model”, Intelligent systems. Theory and Applications,
24:3 (2020), 99–120 (In Russian).

78

Implementation of key-value databases by
cellular automata with locators 1

E. E. Gasanov2, A. A. Propazhin3

In this paper, it is shown that key-value databases can be
implemented by cellular automata with locators in such a way that
the execution time of basic operations, such as search, insert, delete,
will not depend on the size of the database and will be equal to the
total length of the key and value.

Keywords: Cellular automata with locators, key-value databases.

The key-value database is a popular data storage paradigm now, also
called a dictionary. Such a database can be represented as a set of pairs of
strings (k, v), where the first string k is called the key and serves as the
identifier of the pair, and the second string v is called the value. String is a
sequence of characters of some alphabet A, ending with a special character
0, called the string ending character, and the character 0 does not belong to
the alphabet A.

The key-value database supports the following operations:
1) inserting a pair (k, v) — an entry with the key k and the value v

appears in the database; if an entry with the key k already existed in the
database, then the value is replaced with v;

2) deleting an entry with a key k — an entry (k, v) is deleted from the
database; if there is no entry with the key k in the database, then the database
does not change;

3) searching for an element by key k — there is an entry (k, v) in the
database, and the value v is returned as an answer; if there is no entry with
the key k in the database, then the answer is an empty set.

The concept of a cellular automaton with locators was introduced by
E.E. Gasanov in [1] and refined by G.V. Kalachev in [2]. The exact definition
can be found in the above-mentioned works, but here we give an informal
definition of a one-dimensional cellular automaton with one complete locator,
which will be used in this work.

A one-dimensional cellular automaton is a set of identical elementary
automata located at integer nodes of the real line, and called cells. The

1 Originally published in Intellektualnye Sistemy. Teoriya i prilogeniya (2021) 25, No.
4, 108-112 (in Russian).

2Gasanov Elyar Eldarovich — professor, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intellectual Systems,
e-mail: el_gasanov@gmail.com.

3Propazhin Artem Alekseevich — student, Lomonosov Moscow State University, Faculty
of Mechanics and Mathematics, Chair of Mathematical Theory of Intellectual Systems, e-
mail: artem.propazhin@mail.ru.

79

behavior of a cellular automaton is specified by the transition function,
namely, the state of the cell at the next moment is uniquely determined
by its own state at the current moment and the states of its neighbors. In
what follows, we will assume that each cell has exactly two neighbors: the
closest to the left and the closest to the right. One of the states of a cell is
called an quiescent state, and if the cell and its neighbors are in an quiescent
state, then the next moment the cell will remain in an quiescent state. In a
cellular automaton with one complete locator, in addition to the alphabet
of states, there is a broadcasting alphabet with a commutative semigroup
operation specified on it. In this paper, the maximum operation will be used
as such an operation. In a cellular automaton with one complete locator,
each cell sends a certain signal from the broadcasting alphabet, determined
by the broadcasting function, to the air every moment. The value of the cell
broadcasting function is determined by the cell’s own state, the states of its
neighbors and the total broadcasting signal. The total broadcasting signal is
formed by summing up the broadcasting signals of all cells with the exception
of the signal of this cell using a semigroup operation. In a cellular automaton
with one complete locator, the value of the cell transition function is also
determined by the cell’s own state, the states of its neighbors and the total
broadcasting signal.

Let’s introduce another entity — the database user. We will assume that
the database user has the ability to send signals from the broadcasting
alphabet to the air, i.e. his broadcasting signal is summarized with
broadcasting signals of all automata. And database user can receive total
broadcasting signal from the air. We will assume that a cellular automaton
with locators, together with the user, implements a key-value database if the
broadcasting alphabet is a set consisting of pairs of the form (“command“,
A∪{0}), where “command“ takes one of the values: “search“, “insert“, “delete“,
“answer“, “no answer“, “no command“ (here “no command“ is the minimum
element), and the behavior of the cellular automaton is set as follows.

1) The user broadcasts the “search“ command and the first character of
the key k. Then the user sequentially broadcasts the “no command“ command
and all the other characters of the key, including the character 0. If there is
no entry with the key k, in the database, then on the next clock cycle after
the 0 character is given, the cellular automaton broadcasts the command “no
answer“. If there is an entry (k, v) in the database, then on the next clock
cycle after the character 0 is submitted, the cellular automaton broadcasts
a pair (“answer“, a), where a ∈ A is the first element of the value v, and
in subsequent cycles the cellular automaton sequentially broadcasts all other
symbols of the value v, including the character 0.

2) The user broadcasts the “insert“ command and the first character of
the key k. Then the user sequentially broadcasts the “no command“ command

80

and all the other characters of the key, including the character 0. After
that the user sequentially broadcasts the “no command“ command and all
characters of the value v, including the character 0. As a result, a pair (k, v)
appears in the database implemented by the cellular automaton, i.e. if the
“search“ command and the key k are subsequently submitted to the cellular
automaton, then the cellular automaton will return the value of v in response.

3) The user submits the “delete“ command and the first character of the
key k. Then the user sequentially broadcasts the “no command“ command
and all the other characters of the key, including the character 0. As a result,
the entry with the key k disappears from the database implemented by the
cellular automaton, i.e., during the subsequent search for the key k, the
cellular automaton returns “no answer“.

Theorem 1. There is a cellular automaton with locators and a user which
implements a key-value database, and for which the execution time of the
search, insert, delete operations will not exceed the total length of the key and
value.

Here is the idea of proving this theorem.
We will use a one-dimensional cellular automaton with one complete

locator, and elementary automata lying in the negative region of the
numerical line will not be used. The alphabet of broadcasting has already
been described above. The alphabet of states consists of triples of the form
(“command“, “cell type“, A ∪ {0, ∗}), where “command“ takes one of the
values: “search“, “insert“, “delete“, “answer“; “cell type“ takes one of the values:
“commander“, “current cell type key“, “current cell type value“, “unprocessed
cell“, “receiver for recording“; ∗ is a special character. If an elementary
automaton will be marked with the symbol “receiver for recording“ then
starting from this automaton the next record will be written to the database.
At the initial moment, the automaton with the number 0 will be marked with
symbol “receiver for recording“. Database records will be pairs of key-value
strings, and the first character of each record will be marked with the state
“commander“.

Let’s describe the functioning of this automaton. When the insertion
begins, all commanders receive a signal from the air in the form (“insert“,
k1), where k1 is the first character of the key. If k1 matches the value stored
in the state of the commander cell, then in the state of the cell next to
the right, the command changes to “insert“ and the cell type to “current
cell type key“. On the next clock cycle, the cell next to the right of the
commander, also receiving a signal from the air, checks for a match with the
stored symbol. After that the current cell changes its type to “unprocessed
cell“. When a match occurs, in the state of the cell next to the right of
current cell, the command changes to “insert“ and the cell type to “current

81

cell type key“ and a similar process occurs to the previous one. The process
occurs sequentially up to and including the 0 symbol. The key verification
process starts simultaneously with all commanders. If at some point there is
a mismatch, then the type of the next cell changes to “unprocessed cell“. If
we have reached the 0 symbol, it means that we have found a record with the
desired key, and this record should be excluded from the database. Exclusions
from the database are achieved by the fact that 0 in the state of the current
cell changes to the symbol ∗. As a result, there will be no match in subsequent
searches.

Simultaneously with the search for the key, starting from the cell marked
with the state “receiver for recording“ the key-value pair is sequentially
recorded into the database. When the insert command arrives, the cell in
the “receiver for recording“ state becomes the commander and stores the
first character of the key k1 in its state. At the same time, the cell to
the right of this cell changes the command to “insert“ and the cell type
to “receiver for recording“. Further, the cells that have the “insert“ command
and the “receiver for recording“ cell type retain the key symbols and values
coming from the air in their state. In this case, the state (“insert“, “receiver
for recording“) moves to the next cell on the right. The exception is when the
0 character arrives for the value. At this moment, the next cell on the right
switches to the state (“search“, “receiver for recording“).

Deletion is similar to insertion. Only during deletion does the process of
writing to the end of the database not begin.

During the search, the key is read in the same way as when inserting. But
after reaching the 0 symbol, the replacement of the symbol 0 with ∗ does not
occur. The cell next to the right of the cell with the 0 symbol changes the
command to “search“ and the cell type to “current cell type value“. Cells in
this state send a signal to the air (“answer“, a), where a ∈ A is the stored
value. The current cell changes its type to “unprocessed cell“ after sending
the signal. Signals with value symbols are sequentially sent to the air up to
and including the signal with the symbol 0.

Список литературы
[1] Gasanov E. E., “Cellular automata with locators”, Intelligent Systems. Theory

and applications, 24:2 (2020), 121–133 (In Russian).
[2] Kalachev G. V., “Remarks on the definition of a cellular automaton with

locators”, Intelligent Systems. Theory and applications, 24:4 (2020), 47–56 (In
Russian).

82

К сведению авторов публикаций в журнале
«Интеллектуальные системы. Теория и приложения»

В соответствии с требованиями ВАК РФ к изданиям, входящим в пере-
чень ведущих рецензируемых научных журналов и изданий, в которых могут
быть опубликованы основные научные результаты диссертаций на соискание
ученой степени доктора и кандидата наук, статьи в журнал «Интеллектуаль-
ные системы. Теория и приложения» предоставляются авторами в следующей
форме:
1. Статьи, набранные в пакете LATEX, предоставляются к загрузке через WEB-
форму http://intsysjournal.org/generator_form .
2. К статье прилагаются файлы, содержащие название статьи на русском и
английском языках, аннотацию на русском и английском языках (не более 50
слов), список ключевых слов на русском и английском языках (не более 20
слов), информация об авторах: Ф.И.О. полностью, место работы, должность,
ученая степень и/или звание (если имеется), контактные телефоны (с кодом
города и страны), e-mail, почтовый адрес с индексом города (домашний или
служебный).
3. Список литературы оформляется в едином формате, установленном систе-
мой Российского индекса научного цитирования.
4. За публикацию статей в журнале «Интеллектуальные системы. Теория и
приложения» с авторов (в том числе аспирантов высших учебных заведений)
статей, рекомендованных к публикации, плата не взимается. Оттиски статей
авторам не предоставляются. Журнал распространяется по подписке, экзем-
пляры журнала рассылаются подписчикам наложенным платежом. Условия
подписки публикуются в каталоге НТИ «Роспечать», индекс журнала 64559.
5. Доступ к электронной версии последнего вышедшего номера осуществля-
ется через НЭБ «Российский индекс научного цитирования». Номера, вы-
шедшие ранее, размещаются на сайте http://intsysjournal.org, и доступ к ним
бесплатный. Там же будут размещены аннотации всех публикуемых статей.

83

Подписано в печать: 20.12.2021
Дата выхода: 25.12.2021

Тираж: 200 зкз.
Цена свободная

Свидетельство о регистрации СМИ: ПИ № ФС77–58444 от 25 июня 2014 г.,
выдано Федеральной службой по надзору в сфере связи, информационных

технологий и массовых коммуникаций(Роскомнадзор).

84

