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Introduction

In recent years knowledge representation formalisms based on various non- 
classical logics instead of classical logic have attracted increasing attention. 
In description logic, for example, various approaches to modeling para- 
consistent, inconsistency-tolerant reasoning have been developed. In the 
paper [4, p. 301] from 2003 it was remarked that

[t]here is some work on description logics using non-monotonic,
many-valued, or fuzzy-logic, see [4, Chapter 6], however, the 
underlying logic of almost all systems of description logic is
classical.

Here [4] is The Description Logic Handbook, edited by F. Baader et al., 
Cambridge University Press, 2003. When the second part of [4] appeared 
in 2008 [5], the situation had already changed considerably. In 2005, e.g., 
the edited volume [2] on inconsistency tolerance was published, observing
“a need to develop tolerance to inconsistency in application technologies 
such as databases, knowledgebases, and software systems,” and nowadays 
inconsistency handling in description logic based ontologies is an established 
area within knowledge representation.

  A prominent example of a paraconsistent logic that has found quite a 
few applications in knowledge representation and AI is first-degree entailment 
logic, FDE, for a survey see [6]. The system FED lacks a genuine implication, 
however, and the paraconsistent logic N4 due to A. Almukdad and D. Nelson
[1] expands FDE by a constructive conditional. There is a sequent calculus
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for N4 that makes use of two sequent arrows standing for different
derivability relations, one that represents the preservation of support of truth,
whereas the other represents the preservation of support of falsity, cf. [3]. The
present paper is about an expansion of N4 by operators for meaningfulness
and nonsensicality. This logic contains three congruentiality-breaking unary
connectives, which gives rise to a tetralateral sequent calculus with four
different sequent arrows.

1. What is proof-theoretic bi- and tetralateralism?

Proof-theoretic tetralateralism is a generalization of proof-theoretic bilateral-
ism. The full paper [10] contains a comparison of various approaches to proof-
theoretic bilateralism and proposes a definition of proof-theoretic multi-
lateralism. For reasons of space, in this abstract, we briefly mention only
one understanding of proof-theoretic bilateralism and and highlight some
differences with the present approach to proof-theoretic tetralateralism.

According to D. Riply, [7], bilateralism “is the view that which inferences
are valid is . . . to be explained in terms of conditions on assertion and denial.”
In [8] he explains that “bilateralism, holds that we must consider conditions
governing the speech acts of assertion and denial. For a bilateralism to
genuinely be bi, then, it must hold that denial conditions cannot themselves
be understood as deriving only from assertion conditions,” and in [9], Ripley
characterizes bilateralism as “the view that meanings in general are to be
given via conditions on assertion and denial.”

Most definitions of bilateralism have in common a reference to the speech
acts of assertion and denial, or attitudes of acceptance and rejection, and
emphasize that those two notions are on a par and equally important.
Another point often mentioned is that in bilateralism rejection or denial are
seen as conceptually prior to negation, i.e., the denial of A is not interpreted
in terms of, or as the assertion of the negation of A but the other way around

The notion of bilateralism advocated in [10] does not consider speech acts
or propositional attitudes as the primary notions to act upon in the context of
a proof-theoretic theory of meaning (or semantics in general). Rather proof–
refutation, provability–refutability, verification–falsification, demonstrability
of meaningfulness–demonstrability of nonsensicality are central pairs of
proof-theoretically relevant semantical concepts. This is reflected in the
presence of two or more separate derivability relations.



2. A case-study in proof-theoretic tetralateralism

We will expand the language of propositional N4 by two unary connectives,
[m] and [n]. A formula [m]A is to be read as “it is meaningful that A”,
and [n]A is to be understood as “it is nonsensical that A”. The logic of the
expanded language will be referred to as N4mn.

3. Kripke semantics and completeness

The propositional language L of N4mn is defined in Backus-Naur form as
follows:

variables Φ: p ∈ Φ
formulas: A ∈ FormL(Φ)

A ::= p | (A ∧A) | (A ∨A) | (A→ A) | ∼A | [m]A | [n]A.

We use A↔ B as an abbreviation of (A→ B)∧ (B → A). The language
L ′ of positive intuitionistic propositional logic, IPL+, is obtained from L by
dropping the unary connectives, i.e., ∼, [m], and [n], and the language L ′′
of the propositional logic N4 is obtained from L by dropping [m] and [n].

Definition 1. A Kripke frame is a structure 〈M,R〉, whereM is a nonempty
set (of information states), and R is a reflexive and transitive binary relation
(of information state expansion) on M .

Definition 2. A valuation |= on a Kripke frame 〈M,R〉 is a mapping from
the set Φ of propositional variables to the power set 2M of M such that for
any p ∈ Φ and any x, y ∈ M , if x ∈ |= (p) and xRy, then y ∈ |= (p). We
will write x |= p for x ∈ |= (p). This valuation |= is extended to a mapping
from the set of all L′-formulas to 2M by:

x |= A→B iff ∀y ∈M [xRy and y |= A imply y |= B],
x |= A ∧B iff x |= A and x |= B,
x |= A ∨B iff x |= A or x |= B.

If F = 〈M,R〉 is a Kripke frame, then 〈M,R, |=〉 is a Kripke model for IPL+

based on F .

The following heredity condition holds for |=: for any L′-formula A and
any x, y ∈M , if x |= A and xRy, then y |= A.

Definition 3. An L′-formula A is true in a Kripke model 〈M,R, |=〉 for
IPL+ if x |= A for any x ∈M , and is valid on a Kripke frame F = 〈M,R〉
if it is true for every Kripke model for IPL+ based on F . An L′-formula A
is said to be IPL+-valid if A is valid on every Kripke frame. Let Γ∪{A} be a



set of L′-formulas. Semantic consequence (entailment) is defined in terms of
truth preservation at each state: Γ |= A if for every Kripke model 〈M,R, |=〉
for IPL+ and for all x ∈ M , x |= A if x |= B for all B ∈ Γ. We define the
logic IPL+ model-theoretically as the pair 〈L′, {Γ, A | Γ |= A}〉.

We turn to the language L and define four separate valuation functions
|=+, |=−, |=m, and |=n. These mappings determine for a given propositional
variable p, the set of states that support the truth, the falsity, the meaning-
fulness, and the nonsensicality (meaninglessness) of p, respectively. Support
of truth, support of falsity, support of meaningfulness, and support of mean-
inglessness are seen as properties that are independent of each other. In
particular, it is not excluded that an information state supports both the
truth and the falsity of a given propositional variable or both its meaning-
fulness and its nonsensicality.

Definition 4. The valuation functions |=+, |=−, |=m, and |=n on a Kripke
frame 〈M,R〉 are mappings from the set Φ to the power set 2M of M such
that for any ? ∈ {+,−,m, n}, any p ∈ Φ and any x, y ∈M , if x ∈ |=? (p) and
xRy, then y ∈ |=? (p). We will write x |=? p for x ∈ |=? (p). The functions
|=+, |=−, |=m, and |=n are extended to mappings from the set of all formulas
to 2M by:

1) x |=+ A ∧B iff x |=+ A and x |=+ B,
x |=+ A ∨B iff x |=+ A or x |=+ B,
x |=+ A→B iff ∀y ∈M [xRy and y |=+ A imply y |=+ B],
x |=+ ∼A iff x |=− A,
x |=+ [m]A iff x |=m A,
x |=+ [n]A iff x |=n A,

2) x |=− A ∧B iff x |=− A or x |=− B,
x |=− A ∨B iff x |=− A and x |=− B,
x |=− A→B iff x |=+ A and x |=− B,
x |=− ∼A iff x |=+ A,
x |=− [m]A iff x |=n A,
x |=− [n]A iff x |=m A,

3) x |=m A ◦B iff x |=m A and x |=m B, for ◦ ∈ {∧,∨,→},
x |=m ◦A iff x |=m A, for ◦ ∈ {∼, [m], [n]},

4) x |=n A ◦B iff x |=n A or x |=n B, for ◦ ∈ {∧,∨,→},
x |=n ◦A iff x |=n A, for ◦ ∈ {∼, [m], [n]}.

If F = 〈M,R〉 is a Kripke frame, then 〈M,R, |=+, |=−, |=m, |=n〉 is a Kripke
model for N4mn based on F .



The heredity condition holds for |=+, |=−, |=m, and |=n, i.e., for any
L-formula A and any x, y ∈ M , if x |=∗ A and xRy, then y |=∗ A, for
∗ ∈ {+,−,m, n}.

As to a motivation of the semantical clauses for [m] and [n], we may
note that a compound formula is meaningful (nonsensical) iff all (some) of
its immediate proper subformulas are; meaninglessness is ‘infectious’. Thus,
in particular, x |=m [n]A iff x |=m A, and x |=m [n]A does not, in general,
imply x |=+ [n]A. For the statement that A is nonsensical to be meaningful,
A must be meaningful, although [n]A may well be false.

Definition 5. An L-formula A is said to be true in a Kripke model for
N4mn 〈M,R, |=+, |=−, |=m, |=n〉 if x |=+ A for any x ∈ M , and to be valid
on a Kripke frame F = 〈M,R〉 if it is true for every Kripke model for N4mn
based on F . An L-formula A is said to be N4mn-valid if A is valid on every
Kripke frame. Let Γ ∪ {A} be a set of L-formulas. Entailment is defined in
terms of support-of-truth preservation at each state: Γ |=+ A if for all Kripke
models for N4mn 〈M,R, |=+, |=−, |=m, |=n〉 and for all x ∈ M , x |=+ A if
x |=+ B for all B ∈ Γ. We write A |=+ B for {A} |=+ B. We define the
logic N4mn model-theoretically as the pair 〈L, {Γ, A | Γ |=+ A}〉 and N4 is
model-theoretically defined as 〈L′′, {Γ, A | Γ |=+ A}〉.

Proposition 1. Each of the unary connectives ◦ ∈ {∼, [m], [n]} is congru-
entiality-breaking in the sense that there are L-formulas A and B such that
A |=+ B and B |=+ A but not: ◦A |=+ ◦B and ◦B |=+ ◦A.

Definition 6. Given the set Φ of propositional variables, we define three
more sets of propositional variables, namely Φ− := {p− | p ∈ Φ}, Φm :=
{pm | p ∈ Φ}, and Φn := {pn | p ∈ Φ}. We inductively define a mapping
f from FormL(Φ) to the set of formulas of the language L′ of IPL+ defined
over Φ ∪ Φ− ∪ Φm ∪ Φn as follows:

1) for any p ∈ Φ, f(p) := p, f(∼p) := p−, f([m]p) := pm, f([n]p) := pn,
2) f(A ◦B) := f(A) ◦ f(B) for ◦ ∈ {→,∧,∨},
3) f(∼(A ∧B)) := f(∼A) ∨ f(∼B),
4) f(∼(A ∨B)) := f(∼A) ∧ f(∼B),
5) f(∼(A→B)) := f(A) ∧ f(∼B),
6) f(∼∼A) := f(A),
7) f(∼[m]A) := f([n]A),
8) f(∼[n]A) := f([m]A),
9) f([m](A ◦B)) := f([m]A) ∧ f([m]B), for ◦ ∈ {→,∧,∨},
10) f([m] ◦A) := f([m]A), for ◦ ∈ {∼, [m], [n]},
11) f([n](A ◦B)) := f([n]A) ∨ f([n]B), for ◦ ∈ {→,∧,∨},



12) f([n] ◦A) := f([n]A), for ◦ ∈ {∼, [m], [n]}.

We write f(Γ) to denote the result of replacing every occurrence of a formula
A in Γ by an occurrence of f(A); thus, f(∅) = ∅.

Lemma 1. Let f be the function defined in Definition 6. For any Kripke
model for N4mn 〈M,R, |=+, |=−, |=m, |=n〉, we can define a Kripke model
for Int+ 〈M,R, |=〉 such that for any A ∈ FormL(Φ) and any x ∈ M ,

(1) x |=+ A iff x |= f(A),
(2) x |=− A iff x |= f(∼A),
(3) x |=m A iff x |= f([m]A),
(4) x |=n A iff x |= f([n]A).

Lemma 2. Let f be the function defined in Definition 6. For any Kripke
model 〈M,R, |=〉 for IPL+, we can construct a Kripke model 〈M,R, |=+, |=−,
|=m, |=n〉 for N4mn such that for any L-formula A and any x ∈M ,

1) x |= f(A) iff x |=+ A,
2) x |= f(∼A) iff x |=− A,
3) x |= f([m]A) iff x |=m A,
4) x |= f([n]A) iff x |=n A.

Theorem 1 (Semantical embedding). Let f be the mapping from Definition
6. For any set of L-formulas Γ ∪ A, Γ |=+ A in N4mn iff f(Γ) |= f(A) in
IPL+.

3.1. A tetralateral sequent calculus for N4mn

We define a tetralateral sequent calculus SN4mn for N4mn that makes use
of four different sequent arrows by generalizing a combination of the sequent
calculi Sn4 and Dn4 from [3]. A sequent is an expression of the form,

Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ A

where Γ1, . . . ,Γ4 are finite, possibly empty multisets of L-formulas, A is an
L-formula, and ∗ ∈ {+,−,m, n}. For a singleton multiset {A} we usually
write just A, and A,Γ as well as Γ, A (∆,Γ as well as Γ,∆) designates the
union of the multisets Γ and {A} (∆ and Γ).

Definition 7. Let ∗ ∈ {+,−,m, n}, ◦ ∈ {∼, [m], [n]}, and ] ∈ {∧,∨,→}.
The sequent calculus SN4mn is given by the following sequents and sequent
rules. The axiomatic sequents of SN4mn are of the form:

p : ∅ : ∅ : ∅⇒− p ∅ : p : ∅ : ∅⇒+ p
∅ : ∅ : p : ∅⇒m p ∅ : ∅ : ∅ : p⇒n p



for any p ∈ Φ, where ∅ is the empty multiset.
The structural rules of SN4mn are of the form:

Γ1 : Γ2 : Γ3 : Γ4 ⇒− A A,Γ′1 : Γ′2 : Γ′3 : Γ′4 ⇒∗ C
Γ1,Γ

′
1 : Γ2,Γ

′
2 : Γ3,Γ

′
3 : Γ4,Γ

′
4 ⇒∗ C

(cut−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A Γ′1 : A,Γ′2 : Γ′3 : Γ′4 ⇒∗ C
Γ1,Γ

′
1 : Γ2,Γ

′
2 : Γ3,Γ

′
3 : Γ4,Γ

′
4 ⇒∗ C

(cut+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒m A Γ′1 : Γ′2 : A,Γ′3 : Γ′4 ⇒∗ C
Γ1,Γ

′
1 : Γ2,Γ

′
2 : Γ3,Γ

′
3 : Γ4,Γ

′
4 ⇒∗ C

(cutm)

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A Γ′1 : Γ′2 : Γ′3 : A,Γ′4 ⇒∗ C
Γ1,Γ

′
1 : Γ2,Γ

′
2 : Γ3,Γ

′
3 : Γ4,Γ

′
4 ⇒∗ C

(cutn)

A,A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(co−)
Γ1 : A,A,Γ2 : Γ3 : Γ4 ⇒∗ C

Γ1 : A,Γ2 : Γ3 : Γ4 ⇒∗ C
(co+)

Γ1 : Γ2 : A,A,Γ3 : Γ4 ⇒∗ C
Γ1 : Γ2 : A,Γ3 : Γ4 ⇒∗ C

(com)
Γ1 : Γ2 : Γ3 : A,A,Γ4 ⇒∗ C

Γ1 : Γ2 : Γ3 : A; Γ4 ⇒∗ C
(con)

Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(we−)
Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

Γ1 : A,Γ2 : Γ3 : Γ4 ⇒∗ C
(we+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
Γ1 : Γ2 : A,Γ3 : Γ4 ⇒∗ C

(wem)
Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

Γ1 : Γ2 : Γ3 : A,Γ4 ⇒∗ C
(wen).

The introduction rules for unary connectives in succedent position of sequents
are of the form:

Γ1 : Γ2 : Γ3 : Γ4 ⇒− A
Γ1 : Γ2 : Γ3 : Γ4 ⇒+ ∼A

(∼r+)
Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A

Γ1 : Γ2 : Γ3 : Γ4 ⇒− ∼A
(∼r−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒m A

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ [m]A
([m]r+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A

Γ1 : Γ2 : Γ3 : Γ4 ⇒− [m]A
([m]r−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ [n]A
([n]r+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒m A

Γ1 : Γ2 : Γ3 : Γ4 ⇒− [n]A
([n]r−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒m A
Γ1 : Γ2 : Γ3 : Γ4 ⇒m ◦A (◦rm)

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A
Γ1 : Γ2 : Γ3 : Γ4 ⇒n ◦A (◦rn).

The introduction rules for unary connectives in antecedent position of
sequents are of the form:

A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
Γ1 : ∼A,Γ2 : Γ3 : Γ4 ⇒∗ C

(∼l+)
Γ1 : A,Γ2 : Γ3 : Γ4 ⇒∗ C
∼A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(∼l−)

Γ1 : Γ2 : A,Γ3 : Γ4 ⇒∗ C
Γ1 : [m]A,Γ2 : Γ3 : Γ4 ⇒∗ C

([m]l+)
Γ1 : Γ2 : Γ3 : A,Γ4 ⇒∗ C

[m]A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
([m]l−)



Γ1 : Γ2 : Γ3 : A,Γ4 ⇒∗ C
Γ1 : [n]A,Γ2 : Γ3 : Γ4 ⇒∗ C

([n]l+)
Γ1 : Γ2 : A,Γ3 : Γ4 ⇒∗ C

[n]A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
([n]l−)

Γ1 : Γ2 : A,Γ3 : Γ4 ⇒∗ C
Γ1 : Γ2 : ◦A,Γ3 : Γ4 ⇒∗ C

(◦lm)
Γ1 : Γ2 : Γ3 : A,Γ4 ⇒∗ C
Γ1 : Γ2 : Γ3 : ◦A,Γ4 ⇒∗ C

(◦ln).

The positive inference rules for the binary connectives of SN4mn are of the
form:

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A Γ′1 : B,Γ′2 : Γ′3 : Γ′4 ⇒∗ C
Γ1,Γ

′
1 : A→ B,Γ2,Γ

′
2 : Γ3,Γ

′
3 : Γ4,Γ

′
4 ⇒∗ C

(→ l+)

Γ1 : A,Γ2 : Γ3 : Γ4 ⇒+ B

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A→ B
(→ r+)

Γ1 : A,B,Γ2 : Γ3 : Γ4 ⇒∗ C
Γ1 : A ∧B,Γ2 : Γ3 : Γ4 ⇒∗ C

(∧l+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A Γ1 : Γ2 : Γ3 : Γ4 ⇒+ B

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A ∧B
(∧r+)

Γ1 : AΓ2 : Γ3 : Γ4 ⇒∗ C Γ1 : B,Γ2 : Γ3 : Γ4 ⇒∗ C
Γ1 : A ∨B,Γ2 : Γ3 : Γ4 ⇒∗ C

(∨l+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A ∨B
(∨r1+)

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ B

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A ∨B
(∨r2+).

The negative inference rules for the binary connectives of SN4mn are of the
form:

B,Γ1 : A,Γ2 : Γ3 : Γ4 ⇒∗ C
A→ B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(→ l−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A Γ1 : Γ2 : Γ3 : Γ4 ⇒− B
Γ1 : Γ2 : Γ3 : Γ4 ⇒− A→ B

(→ r−)

A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
A ∧B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(∧l−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒− A
Γ1 : Γ2 : Γ3 : Γ4 ⇒− A ∧B

(∧r1−)
Γ1 : Γ2 : Γ3 : Γ4⇒− B

Γ1 : Γ2 : Γ3 : Γ4 ⇒− A ∧B
(∧r2−)

A,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
A ∨B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

(∨l1−)
B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C

A ∨B,Γ1 : Γ2 : Γ3 : Γ4 ⇒∗ C
(∨l2−)

Γ1 : Γ2 : Γ3 : Γ4 ⇒− A Γ1 : Γ2 : Γ3 : Γ4 ⇒− B
Γ1 : Γ2 : Γ3 : Γ4 ⇒− A ∨B

(∨r−).

The m-related inference rules for the binary connectives of SN4mn are of the
form:

Γ1 : Γ2 : A,B,Γ3 : Γ4 ⇒∗ C
Γ1 : Γ2 : A]B,Γ3 : Γ4 ⇒∗ C

(]lm)



Γ1 : Γ2 : Γ3 : Γ4 ⇒m A Γ1 : Γ2 : Γ3 : Γ4 ⇒m B
Γ1 : Γ2 : Γ3 : Γ4 ⇒m A]B

(]rm).

The n-related inference rules for the binary connectives of SN4mn are of the
form:

Γ1 : Γ2 : Γ3 : A,Γ4 ⇒∗ C Γ1 : Γ2 : Γ3 : B,Γ4 ⇒∗ C
Γ1 : Γ2 : Γ3 : A]B,Γ4 ⇒∗ C

(]ln)

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A
Γ1 : Γ2 : Γ3 : Γ4 ⇒n A]B

(]r1n)
Γ1 : Γ2 : Γ3 : Γ4 ⇒n B

Γ1 : Γ2 : Γ3 : Γ4 ⇒n A]B
(]r2n).

Proposition 2. In SN4mn, for any L-formula A,

1. ` A : ∅ : ∅ : ∅⇒− A, 2. ` ∅ : A : ∅ : ∅⇒+ A,
3. ` ∅ : ∅ : A : ∅⇒m A, 4. ` ∅ : ∅ : ∅ : A⇒n A.

3.2. Syntactical embedding, cut-elimination, decidability, and
completeness

We syntactically embed SN4mn into Gentzen’s sequent calculus LJ+ for
IPL+. From this embedding we obtain the admissibility of SN4mn’s cut-
rules, the decidability of SN4mn, and its completeness with respect to the
class of all models for N4mn. A sequent of LJ+ is an ordinary sequent, i.e.,
an expression of the form Γ⇒ A where Γ is a finite multiset of L′-formulas
and A is an L′-formula. We consider L′ defined over Φ ∪ Φ− ∪ Φm ∪ Φn.

Theorem 2 (Syntactical embedding). Let f be the mapping from Definition
6. For any finite multiset of L-formulas Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 ∪ {A} we have:

(a) (1) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A in SN4mn iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f(A) in LJ+;

(2) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒− A in SN4mn iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f(∼A) in LJ+;

(3) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒m A in SN4mn iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f([m]A) in LJ+;

(4) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒n A in SN4mn iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f([n]A) in LJ+.

(b) (1) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒+ A in SN4mn−{(cut+), (cut−), (cutm), (cutn)}
iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f(A) in LJ+ − (cut);

(2) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒− A in SN4mn−{(cut+), (cut−), (cutm), (cutn)}
iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f(∼A) in LJ+ − (cut);

(3) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒m A in SN4mn−{(cut+), (cut−), (cutm), (cutn)}
iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f([m]A) in LJ+ − (cut);



(4) ` Γ1 : Γ2 : Γ3 : Γ4 ⇒n A in SN4mn−{(cut+), (cut−), (cutm), (cutn)}
iff
` f(∼Γ1), f(Γ2), f([m]Γ3), f([n]Γ4)⇒ f([n]A) in LJ+ − (cut).

Theorem 3 (Cut-admissibility). The rules (cut+), (cut−), (cutm), and
(cutn) are admissible in cut-free SN4mn.

As a corollary to cut-admissibility one obtains the subformula property
for SN4mn, i.e., if a sequent s is provable in SN4mn, then there is a proof π of
s such that all formulas appearing in π are subformulas of some formula in s.
Moreover, by the decidability of LJ+, for each L-formula A, it is possible to
decide whether f(A) is provable in LJ+. Then, by the syntactical embedding
theorems, SN4mn is decidable.

Theorem 4 (Completeness). Let Γ = {A1, . . . , An} ∪ {A} be a set of L-
formulas, let

∧
Γ be the conjunction (. . . (A1 ∧ A2) ∧ . . . ∧ An), and let

∧
∅

be the formula p → p for some fixed p ∈ Φ. Then Γ |=+ A in N4mn iff
∅ : ∅ : ∅ : ∅⇒+

∧
Γ→ A is provable in SN4mn.
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