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The paper introduces the concept of de Morgan multimonoid and
considers the possibility of constructing a relevant multilattice logic
on its basis. The problem of constructing a sequent calculus for it is
discussed.
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Multilattice logic MLn arose in [4] as a generalisation of bilattice logic,
trilattice logic, and tetralattice logic which are themselves generalisations of
the logic of De Morgan lattices called first degree entailment, one of the most
important relevant logics (see [4] for more details and [1] for the current state
of affairs in multilattice logic). The semantics of MLn is based on multilat-
tices, i.e. lattices equipped with n partial orders. Meet, join, and inversion
exist for any for any such order. Thus, a multilattice has n conjunctions,
disjunctions, and negations. In [3] MLn was supplied with n implications
and co-implications. However, the implications added to MLn are classical.
Besides, the combination of two negations produced by different orders be-
haves as a Boolean complementation. Hence, MLn is not a relevant logic,
although its roots go back to relevant logic. We think that it is important
to return multilattice logic to its motherland, relevant logic. As a solution of
this problem, we suggest a combination of MLn and the relevant logic R.
[4] A multilattice is a structure Mn = 〈S,61, . . . ,6n〉, where n > 1, S 6= ∅,
61, . . . ,6n are partial orders such that 〈S,61〉, . . . , 〈S,6n〉 are lattices with
the corresponding pairs of meet and join operations 〈∩1,∪1〉, . . . , 〈∩n,∪n〉
and the corresponding j-inversion operations ∼1, . . . ,∼n which satisfy the
following conditions, for each j, k 6 n, j 6= k, and a, b ∈ S:

a 6j b implies ∼jb 6j ∼ja; (anti)
a 6k b implies ∼ja 6k ∼jb; (iso)

∼j∼ja = a. (per2)

An Abelian multimonoid is a structure An = 〈S, ◦1, . . . , ◦n, 1〉, where n > 1,
S 6= ∅, each ◦j (j 6 n) is commutative, associative binary operation on S
with 1 its identity, i.e. 1 ∈ S and 1 ◦j a = a, for each a ∈ S. A de Morgan
multimonoid is a structure Dn = 〈D,61, . . . ,6n, ◦1, . . . , ◦n, 1〉, where n > 1
and
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1) 〈D,61, . . . ,6n〉 is a multilattice;

2) 〈D, ◦1, . . . , ◦n, 1〉 is an Abelian multimonoid;

3) the multimonoid is ordered by the multilattice, i.e. a ◦j (b∪t c) = (a ◦j
b) ∪t (a ◦j c), for each j, t 6 n;

4) ◦j is upper semi-idempotent (’square increasing’), i.e. a 6t a ◦j a, for
each j, t 6 n;

5) for each j, t 6 n, a ◦j b 6t c iff a ◦j ∼tc 6t ∼tb iff if j 6= t, then
a ◦j ∼jb 6t ∼jc (Antilogism);

6) a ◦j b 6t c iff a 6t b 7→jt c, for each j, t 6 n.

Let n > 1 and Dn = 〈D,61, . . . ,6n, ◦1, . . . , ◦n, 1〉 be a de Morgan multi-
monoid. The logic RMLn is built in a propositional language L with the
following connectives: ¬j , ∧j , ∨j , →jt, for each j, t 6 n. These connectives
are interpreted in Dn as follows (where v is a valuation, i.e. a mapping from
the set of all L’s propositional variables to D): v(A ∧j B) = v(A) ∩j v(B),
v(A∨jB) = v(A)∪j v(B), v(A→jt B) = v(A) 7→jt v(B),1 v(¬jA) = ∼jv(A).
A formula A is RMLn-valid iff v(A) >t 1, for each de Morgan multimonoid
Dn, each valuation v, and for each t 6 n.

The axiomatization of the logic RMLn determined by de Morgan multi-
monoids is under the development. As a conjecture, we present the following
sequent calculus. It uses Slaney’s [5] sequent calculus for the positive fragment
of R and the additional rules for negations in the spirit of negation rules
used in MLn [4, 3] and in Kamide’s [2] decidable paraconsistent relevant
logic based on the positive fragment of RW. We need some terminological
preliminaries.

“(1) any formula is a bunch, and (2) for n ≥ 2, if Xi is a
bunch for i = 1, . . . , n, then both sequences (X1, . . . , Xn) and
(X1; . . . ;Xn) are bunches. Bunches of the forms (X1, . . . , Xn) and
(X1; . . . ;Xn) are respectively called intensional and extensional.
Each bunchXi is called an immediate constituent of (X1, . . . , Xn)
and (X1; . . . ;Xn). For the sake of simplicity, we assume that
immediate constituents of an intensional (and an extensional)
bunch are not intensional (and extensional, respectively). Thus,
a bunch of the form (X; (Y ;Z);W ) is identified with the bunch
(X;Y ;Z;W ). In other words, intensional bunches and exten-
sional bunches must appear alternatively in a given bunch.” [2,
p. 179]

1In each de Morgan multimonoid it holds that a ◦j b 6t c iff a 6t ∼t(b ◦j ∼tc). Hence,
a 6t b 7→jt c iff a 6t ∼t(b ◦j ∼tc). Also, we have: a 6t b iff 1 6t a 7→jt b.



In a usual way, one can define the notions of a subbunch and an occurrence
of a subbunch X of Y (such an occurrence is said to be an indicated bunch
occurrence of X (in Y )). We write Γ(X) for an indicated bunch occurrence
of X in Γ. The notion of a sequent is understood as an ordered pair written
as X ⇒ ϕ such that X is a (possibly, empty) bunch and ϕ is a formula.

Now we are ready to intoduce our sequent calculus. In what follows, j, k, n
stands for positive integers such that j, k 6 n and j 6= k. The axioms are as
follows (for any propositional variable p):

(Ax) p⇒ p (Axj) ¬jp⇒ ¬jp

The structural rules are as follows:

(Cut)
X ⇒ ϕ Γ(ϕ)⇒ ψ

Γ(X)⇒ ψ
(I-ex)

Γ(X,Y )⇒ ϕ

Γ(Y,X)⇒ ϕ
(I-co)

Γ(X,X)⇒ ϕ

Γ(X)⇒ ϕ

(E-ex)
Γ(X;Y )⇒ ϕ

Γ(Y ;X)⇒ ϕ
(E-co)

Γ(X;X)⇒ ϕ

Γ(X)⇒ ϕ
(E-wk)

Γ(X)⇒ ϕ

Γ(X;Y )⇒ ϕ

The non-negated rules are as follows:

(∧j ⇒)
Γ(ϕ;ψ)⇒ χ

Γ(ϕ ∧j ψ)⇒ χ
(⇒ ∧j)

X ⇒ ϕ Y ⇒ ψ

X;Y ⇒ ϕ ∧j ψ

(∨j ⇒)
Γ(ϕ)⇒ χ Γ(ψ)⇒ χ

Γ(ϕ ∨j ψ)⇒ χ
(⇒ ∨j)

X ⇒ ϕi

X ⇒ ϕ1 ∨j ϕ2

(→jl⇒)
X ⇒ ϕ Γ(ψ)⇒ χ

Γ(ϕ→jl ψ,X)⇒ χ
(⇒→jl)

X,ϕ⇒ ψ

X ⇒ ϕ→jl ψ

The jj- and jjl-negated logical rules are as follows:

(¬j∧j ⇒)
Γ(¬jϕ)⇒ χ Γ(¬jψ)⇒ χ

Γ(¬j(ϕ ∧j ψ))⇒ χ
(⇒ ¬j∧j)

X ⇒ ϕi

X ⇒ ¬j(ϕ1 ∧j ϕ2)

(¬j∨j ⇒)
Γ(¬jϕ;¬jψ)⇒ χ

Γ(¬j(ϕ ∨j ψ))⇒ χ
(⇒ ¬j∨j)

X ⇒ ¬jϕ Y ⇒ ¬jψ

X;Y ⇒ ¬j(ϕ ∨j ψ)

(¬j¬j ⇒)
Γ(ϕ)⇒ χ

Γ(¬j¬jϕ)⇒ χ
(⇒ ¬j¬j)

X ⇒ ϕ

X ⇒ ¬j¬jϕ

(¬j→jl ⇒)
¬jψ ⇒ Y,¬jϕ

¬j(ϕ→jl ψ)⇒ Y
(⇒ ¬j→jl)

X ⇒ ¬jψ Γ(¬jϕ)⇒
Γ(X)⇒ ¬j(ϕ→jl ψ)

The ljl-negated logical rules are as follows:

(¬l→jl ⇒)
Γ(ϕ,¬lψ)⇒ χ

Γ(¬l(ϕ→jl ψ))⇒ χ
(⇒ ¬l→jl)

X ⇒ ϕ Y ⇒ ¬lψ

X, Y ⇒ ¬l(ϕ→jl ψ)

The kj-negated logical rules are as follows:

(¬k∧j ⇒)
Γ(¬kϕ;¬kψ)⇒ χ

Γ(¬k(ϕ ∧j ψ))⇒ χ
(⇒ ¬k∧j)

X ⇒ ¬kϕ Y ⇒ ¬kψ

X;Y ⇒ ¬k(ϕ ∧j ψ)



(¬k∨j ⇒)
Γ(¬kϕ)⇒ χ Γ(¬kψ)⇒ χ

Γ(¬k(ϕ ∨j ψ))⇒ χ
(⇒ ¬k∨j)

X ⇒ ¬kϕi

X ⇒ ¬k(ϕ1 ∨j ϕ2)

(¬k→j ⇒)
X ⇒ ¬kϕ Γ(¬kψ)⇒ χ

Γ(¬k(ϕ→j ψ), X)⇒ χ
(⇒ ¬k→j)

¬kϕ,X ⇒ ¬kψ

X ⇒ ¬k(ϕ→j ψ)

As for the ¬k¬j , we do not offer any rules, but one may find some option.
For example, the rules for ¬k¬j can be the same as for ¬j¬j (with the
corresponding changes in the algebraic semantics). Atypically for multilattice
logic, our calculus has three types (instead of two) of the negation of impli-
cation rules. The reason is that not only a multilattice is used, but also a
multimonoid.
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