Задача K-конечнопорожденности для предполных классов линейных автоматов, составляющих A-критериальную систему в пространстве линейных автоматов.

В. А. Бирюкова¹

В данной статье рассматривается проблема К- и А-конечнопорожденности для предполных классов линейных автоматов, функционирующих над полем Галуа, состоящим из двух элементов. Для каждого исследуемого класса был предъявлен конечный базис. Совокупность исследуемых классов составляет А-критериальную систему в классе линейных автоматов.

Ключевые слова: конечный автомат, линейный автомат, операции композиции, обратная связь, полнота, замкнутый класс, предполный класс, К-конечнопорожденный класс, А-конечнопорожденный класс.

1. Введение

С середины прошлого века вплоть до настоящего времени не уменьшается интерес к изучению различных свойств конечных автоматов. Конечный автомат можно представить как устройство, в каждый дискретный момент времени пребывающее в одном из конечного числа состояний и обладающее входом и выходом [1]. Описать действие автомата можно с помощью функций k-значной логики. Труды по данной тематике принадлежат таким видным ученым как С.К. Клини [2], Э.Ф. Муру [3], Дж. фон-Нейману [4] и др. В рамках отечественной школы кибернетики начало положили такие известные ученые, как С.В. Яблонский [5], О.Б. Лупанов [6] и В.Б. Кудрявцев [7],[8].

Интересной задачей является изучение вопросов, рассмотренных как для всего пространства конечных автоматов, так и для его различных подмножеств. В частности, задачи полноты и конечнопорожденности для подклассов конечных автоматов, изучение структуры данных подклассов - например, какие предполные или замкнутые классы есть и т.п.

 $^{^1}$ Биргокова Вероника Андреевна — аспирант кафедры Математической теории интеллектуальных систем механико-математического факультета МГУ, e-mail: birvukovaveronika@mail.ru.

Biryukova Veronika Andreevna — graduate student, Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Chair of Mathematical Theory of Intellectual Systems.

В работах А.А. Часовских [9]-[12] подробно рассматриваются вопросы полноты и выразимости в классе линейных автоматов над произвольными конечными полями. Проблема линейной реализуемости автоматов — представления линейными функциями автоматов, функционирующих над конечными полями, — излагается, в частности, в книге А. Гилла "Линейные последовательностные машины"[13].

Естественным продолжением работ в этом направлении является изучение вопросов конечнопорожденности относительно разных множеств операций для различных классов линейных автоматов. В представленной работе будут решены задачи К- и А- конечнопорожденности для предполных классов линейных автоматов, совокупность которых представляет собой А-критериальную систему в пространстве линейных автоматов.

2. Основные понятия

С помощью шестерки $V=(A,Q,B,\varphi,\psi,q_0)$ можно задать инициальный абстрактный конечный автомат [1].Обозначим поле Галуа, состоящее из k элементов E_k . Если существуют натуральные числа $n,s\in\mathbb{N}$ такие, что $A=E_k^n,\ Q=E_k^s,\ B=E_k$ и φ,ψ являются линейными операторами k-значной логики, то автомат V является линейным автоматом.

В данной работе рассматриваются линейные автоматы над полем E_2 . Мы будем применять к автоматам операции композиции, определенные в соответствии с работой [1]. Равными автоматами мы называем автоматы, задающие на существенных переменных равные ограниченно-детерминированные функции и отличающиеся только множеством (возможно пустым) фиктивных переменных.

Таким образом, мы будем рассматривать операции переименования переменных, отождествления переменных, подстановки одного автомата на вход другого автомата и операции обратной связи [1] как операции композиции.

Через \mathcal{B} обозначим множество автоматов, состоящее из сумматора по модулю два, инвертора и задержки с нулевым начальным состоянием.

Линейные автоматы над E_2 получаем из множества \mathcal{B} , используя замыкание по операциям композиции.

Обозначим L_2 множество всех линейных автоматов над полем E_2 .

Пусть $M \subseteq L_2$ — некоторое подмножество линейных автоматов. Будем называть K-замыканием K(M) множество всех линейных автоматов, полученных с помощью операций композиции из элементов множества M.

Если $M \subseteq L_2$, K(M) = M, то M является K-замкнутым классом. Если $M \subseteq L_2$, $K(M) = L_2$, то M является K-полным множеством.

Если $M \subset L_2, \ M \neq L_2, \ K(M) = M, \ \forall \ f \in L_2 \backslash M, \ K(\{f\} \cup M) = L_2,$ то M есть K-предполный класс.

K-замкнутый класс M называется K-конечнопорожденным, если $\exists \{f_1,\ldots,f_m\}\subseteq M:\ M=K(\{f_1,\ldots,f_m\}).$

Также можно рассмотреть в пространстве L_2 оператор A-замыкания — аппроксимационного замыкания. Для этого введем несколько вспомогательных определений.

Пусть
$$f(x_1,\ldots,x_n) \in L_2, M \subseteq L_2, \tau \in \mathbb{Z}_+.$$

Если существует $g(x_1,\ldots,x_n)\in K(M)$ такой, что для любых входных последовательностей $\alpha_i=a_i(0)a_i(1)\ldots, \quad i=\overline{1,n}$ автоматы f и g будут выдавать последовательности, совпадающие на первых τ элементах (обозначим подобное свойство так: $f(\alpha_1,\ldots,\alpha_n)\stackrel{\tau}{=}g(\alpha_1,\ldots,\alpha_n)$,) то говорим, что $f-\tau$ -выразима через M.

Если $f-\tau$ -выразима через M для любого $\tau\in\mathbb{Z}_+,$ то f- выразима через M.

Определим понятие оператора аппроксимационного замыкания множества M. Оператор A-замыкания сопоставляет множеству автоматов M множество всех автоматов, выразимым через M, т.е. $A(M) = \{f \mid f \in L_2, f$ — выразим через M $\}$.

Аналогично оператору K-замыкания для аппроксимационного замыкания вводятся понятия замкнутости, полноты, предполноты и конечно-порожденности.

Если A(M) = M, то M является A-замкнутым классом.

Если $A(M) = L_2$, то M есть A-полное множество.

Если $M\subset L_2,\ M\neq L_2,\ K(M)=M,\ \forall\ f\in L_2\backslash M,\ A(\{f\}\cup M)=L_2,$ то M-A-предполный класс.

A-замкнутый класс M называется A-конечнопорожденным, если $\exists \{f_1, \ldots, f_m\} \subseteq M : M = A(\{f_1, \ldots, f_m\}).$

Введем для формальных степенных рядов над полем E_2 следующее обозначение:

$$R_2(\xi) = \left\{ \sum_{t=0}^{\infty} a(t) \xi^t \mid a(0), \dots, a(t), \dots \in E_2^{\infty} \right\}$$
 — множество формальных степенных рядов переменной ξ с коэффициентами из поля E_2 .

$$E_2^\infty=\left\{a(0),\ldots,a(t),\ldots\mid t\in\mathbb{N}, \forall\ t\ a(t)\in E_2
ight\}$$
— это множество бесконечных последовательностей элементов поля E_2 .

$$E_2'(\xi) = \left\{ \sum_{t=0}^{\infty} a(t) \xi^t \mid a(0), \dots, a(t), \dots \in E_2^{\infty} - \text{периодическая (с предпериодом)} \right\} \subset R_2(\xi).$$

Также для $E_2'(\xi)$ есть эквивалентное определение [9] через многочлены от переменной ξ :

$$E_2'(\xi) = \left\{ \frac{u}{v} \mid u, v \in E_2[\xi], \ v = 1 + \xi \cdot v', v' \in E_2[\xi] \right\} = \left\{ \frac{u}{v} \mid u, v \in E_2[\xi], \ v(0) = 1 \right\}.$$

Таким образом, $E_2'(\xi)$ является подкольцом поля отношений $E_2(\xi)$ [14].

Автомат f можно рассматривать как преобразователь формальных рядов:

$$f(x_1, \dots, x_n) : (R(\xi)_2)^n \to R_2(\xi),$$
 (3)

где x_i принимают значения из $R_2(\xi) \ \forall \ i = \overline{1, n}$.

В работе [9] доказано, что любой линейный автомат может быть представлен следующим образом:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0, \tag{4}$$

где $n \in \mathbb{N}, \ \mu_j \in E_2'(\xi) \ \forall \ j = \overline{0,n}, \ x_i$ принимают значения из $R_2(\xi) \ \forall \ i = \overline{1,n}.$

И наоборот, любой автомат $f(x_1, \ldots, x_n)$, представимый в виде (4), является линейным.

Введем обозначение для множества коэффициентов μ_i при переменных автомата $f: U(f) = \{\mu_1, \dots, \mu_n\}.$

Не трудно заметить, что переменная x_i является существенной переменной линейного автомата f, если $\mu_i \neq 0$. Переменная x_i называется непосредственной переменной линейного автомата f, если $\mu_i(0) = 1$.

Пусть линейный автомат f задан равенством (4). Рассмотрим, как применение операций композиции выражается в терминах представления (4).

1) Переименование переменных.

$$f(x_1, \dots, x_{n-1}, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0 = \sum_{i=1}^n \mu_i \tilde{x}_i + \mu_0 = f(\tilde{x}_1, \dots, \tilde{x}_{n-1}, \tilde{x}_n).$$
(5)

2) Отождествление переменных. Без ограничения общности пусть у линейного автомата $f(x_1, \ldots, x_n)$ отождествлены переменные x_{n-1} и x_n . Тогда

$$f(x_1, \dots, x_{n-1}, x_{n-1}) = g(x_1, \dots, x_{n-1}) = \sum_{i=1}^{n-2} \mu_i x_i + (\mu_{n-1} + \mu_n) x_{n-1} + \mu_0.$$
(6)

Таким образом, отождествление переменных x_{n-1} и x_n линейного автомата f приводит к сложению коэффициентов μ_{n-1} и μ_n .

3) Подстановка одного автомата на вход другого автомата. Пусть есть линейные автоматы $f(x_1, \ldots, x_n)$ и $h(x_1', \ldots, x_m')$. Без ограничения общности пусть автомат h подставляется на n-ый вход автомата f. Тогда:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0, \tag{7}$$

$$h(x_1', \dots, x_m') = \sum_{i=1}^m \mu_i' x_i' + \mu_0', \tag{8}$$

$$g(x_1, \dots, x_{n-1}, x_1', \dots, x_m') = f(x_1, \dots, x_{n-1}, h(x_1', \dots, x_m')),$$
(9)

$$g(x_1, \dots, x_{n-1}, x'_1, \dots, x'_m) = \sum_{i=1}^{n-1} \mu_i x_i + \mu_0 + \mu_n \cdot \left(\sum_{i=1}^m \mu'_i x'_i + \mu'_0\right) =$$

$$= \sum_{i=1}^{n-1} \mu_i x_i + \sum_{i=1}^m \mu_n \mu'_i x'_i + (\mu_n \mu'_0 + \mu_0). \tag{10}$$

Как видно из выражения (10), операция подстановки линейного автомата h на n-ый вход автомата f приводит к умножению коэффициентов автомата h на коэффициент μ_n автомата f.

4) Обратная связь. Пусть дан линейный автомат $f(x_1, ..., x_n)$, и к переменной x_n может быть применена операция обратной связи, т.е. значение автомата f в момент времени t не зависит от $x_n(t)$. Замечу, что в терминах представления (4) к переменной x_n может быть применена операция обратной связи $\Leftrightarrow \mu_n(0) = 0$. Тогда [9]:

$$Fb_{x_n}(f(x_1,\ldots,x_n)) = g(x_1,\ldots,x_{n-1}) = \frac{1}{1+\mu_n} \left(\sum_{i=1}^{n-1} \mu_i x_i + \mu_0\right) =$$

$$=\sum_{i=1}^{n-1} \frac{\mu_i}{1+\mu_n} \cdot x_i + \frac{\mu_0}{1+\mu_n}.$$
 (11)

Таким образом, применение операции обратной связи к линейному автомату f по переменной x_n приводит к применению на коэффициентах автомата f операции Fb, определенной на элементах класса $E_2'(\xi)$ далее.

Операции композиции над линейными автоматами индуцируют следующие операции над элементами μ_1 и μ_2 , $\mu_1, \mu_2 \in E_2'(\xi)$:

- 1. Операция сложения элементов μ_1 и μ_2 : $\mu_1 + \mu_2$.
- 2. Операция умножения элементов $\mu_1, \, \mu_2 : \, \mu_1 \cdot \mu_2.$
- 3. Операция обратной связи, примененная к элементам μ_1 и μ_2 при условии, что $\mu_2(0)=0: Fb(\mu_1,\mu_2)=\frac{\mu_1}{1+\mu_2}.$

Также $E_2'(\xi)$ можно считать множеством одноместных линейных автоматов, сохраняющих нулевую последовательность, к которым можно применять операции 1-3. Таким образом, на $E_2'(\xi)$ вводится оператор $K^{(1)}$ -замыкания. Аналогично введем и другие понятия:

M есть $K^{(1)}$ -замкнутый класс $\Leftrightarrow M \subseteq E_2'(\xi), K^{(1)}(M) = M.$

M называется $K^{(1)}$ -полным множеством $\Leftrightarrow M\subseteq E_2'(\xi),\ K^{(1)}(M)=E_2'(\xi).$

Если $M\subset E_2'(\xi),\ M\neq E_2'(\xi),\ K^{(1)}(M)=M, \forall\ \mu\in E_2'(\xi)\backslash M$ $K^{(1)}(M\cup\{\mu\})=E_2'(\xi),$ то M является $K^{(1)}$ -предполным классом.

 $K^{(1)}$ -замкнутый класс M называется $K^{(1)}$ -конечнопорожденным, если $\exists \{\mu_1,\ldots,\mu_m\}\subseteq M: M=K^{(1)}(\{\mu_1,\ldots,\mu_m\}).$

Пронумеруем неприводимые многочлены над E_2 : $p_1=\xi,\ p_2=1+\xi,\ p_3=1+\xi+\xi^2,\dots$

В работе [9] были найдены все $K^{(1)}$ -предполные классы, совокупность которых образует $K^{(1)}$ -критериальную систему в $E_2'(\xi)$, т.е. $M \subseteq E_2'(\xi)$ будет $K^{(1)}$ -полным множеством тогда, и только тогда, когда M не принадлежит ни одному классу этой системы.

$$M_i^{(1)} = \{ \mu \mid \mu \in E_2'(\xi), \ \mu + \mu(0) = \xi \cdot p_i \cdot \mu', \ \mu' = \frac{u'}{v'} \in E_2'(\xi), \ (v', p_i) = 1 \}, \ i \in \mathbb{N}.$$

Рассмотрим следующие подмножества автоматов в L_2 . $T_0 = \{f | f \in L_2, \ \mu_0(0) = 0\},$

$$T_1 = \{ f | f \in L_2, \sum_{i=0}^n \mu_i(0) = 1 \},$$

 $V_1 = \{f | f \in L_2, f \text{ имеет не более 1 непосредственной переменной}\},$ $V_2 = \{f | f \in L_2, f \text{ имеет нечетное число непосредственных переменных}\},$

$$M_1 = \{ f | f \in L_2, \forall \mu \in U(f), \mu \in M_1^{(1)} \}.$$

Для данных множеств линейных автоматов имеет место следующая теорема:

Теорема [9].

$$M \subseteq L_2, A(M) = L_2 \Leftrightarrow M \not\subseteq \theta, \forall \theta \in \mathcal{J}_A = \{T_0, T_1, V_1, V_2, M_1\}.$$
 (12)

To есть система классов \mathcal{J}_A является A-критериальной системов в L_2 .

3. К-конечнопорожденность предполных классов из системы предполных классов J_A

Пемма 1. K-предполный класс линейных автоматов T_0 порождается множеством $M = \{\xi \cdot x, \ x_1 + x_2, \ \xi\}$, которое является базисом данного класса.

Доказательство. Рассматривается класс автоматов $T_0 = \{f | f \in L_2, \mu_0(0) = 0\}$. Автомат этого класса f в представлении (4) имеет следующий вид:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0, \ \forall \ \mu_i \in E_2'(\xi), \ i = \overline{1, n}, \ \mu_0 \in E_2'(\xi) : \mu_0(0) = 0.$$
(1)

Покажем, что $K(M)=T_0$. Обозначим элементы множества М: $f_1=\xi\cdot x,\ f_2=x_1+x_2,\ f_3=\xi$. Все три автомата принадлежат классу T_0 , так как сохраняют ноль в начальный момент времени. Поскольку класс T_0 K-замкнут, то $K(M)\subset T_0$.

Нулевой автомат содержится в K(M): $f_2(x,x) = x + x = 0 \in K(M)$. Проводник принадлежит K-замыканию множества M: $f_2(x,0) = x + 0 = x \in K(M)$.

Также верно, что $\forall m \in \mathbb{N} \ \xi^m x \in K(M)$, т.к. можно (m-1) раз подставить автомат f_1 в себя: $f_1(f_1(...(f_1(x)...) = \xi^m x \in K(M).$

И для любого многочлена $u=\sum_{i=0}^s a_i\xi^i\in E_2[\xi],\ s\in\mathbb{Z}_+,\ u\cdot x\in K(M)$:

$$u \cdot x = \left(\sum_{i=0}^{s} a_i \xi^i\right) x = \sum_{i=0}^{s} a_i \xi^i x \in K(M).$$
 (2)

Также можно показать, что для любого элемента $\mu \in E_2'(\xi)$ $\mu \cdot x \in K(M)$. Действительно, произвольный элемент $E_2'(\xi)$ можно представить с помощью многочленов: $\mu = \frac{u}{v}, \ u,v \in E_2[\xi], \ v(0) = 1, \quad \text{т.e.} \ v = 1 + \xi v', \ v' \in E_2[\xi]$. Выше было доказано, что $\forall \ v' \in E_2[\xi] \ \xi \cdot v' \cdot x \in K(M)$, поэтому, применив операцию обратной связи к автомату $f(x_1,x_2) = u \cdot x_1 + \xi \cdot v' \cdot x_2 \in K(M)$ по переменной x_2 (данная переменная не является непосредственной, вследствие чего эта операция применима по x_2), получим искомый автомат:

$$Fb_{x_2}(f(x_1, x_2)) = \frac{u \cdot x_1}{1 + \xi \cdot v} = \mu \cdot x \in K(M).$$
 (3)

Заметим, $f \in T_0 \Leftrightarrow \mu_0(0) = 0$. То есть свободный член автомата из класса T_0 можно представить так: $\mu_0 = \xi \cdot \mu'$, $\mu' \in E_2'(\xi)$. Для любого $\mu' \in E_2'(\xi)$ $f(x) = \mu' \cdot x \in K(M)$, поэтому, подставив в f автомат $f_3 \in M$, получим любую константу из T_0 . Используя сумматор, можно получить любой автомат из T_0 . Таким образом, $T_0 \subset K(M)$, благодаря чему $K(M) = T_0$.

Множество М является базисом класса T_0 . Задержку исключить нельзя, т.к. в K-замыкании сумматора и ξ можно получить только функции вида $f(x_1,\ldots,x_n)=x_1++\ldots+x_n+a_0\xi,\quad a_0\in E_2$, т.е. $\xi x\notin K(\{x_1+x_2,\xi\})$. Без сумматора не получим автомата более, чем от одной переменной, что не есть весь класс $T_0:K(M\backslash\{x_1+x_2\})\neq T_0$. Заметим, что сумматор и задержка сохраняют последовательность длины 2 C=00, а ξ её не сохраняет (данный автомат выдает последовательность $\tilde{C}=01$), поэтому ξ нельзя исключить из порождающей класс T_0 системы автоматов M. Можно показать, $\xi\notin K(\{f_1,f_2\})$. В связи с чем приходим к выводу, что множество M является базисом класса T_0 . Лемма полностью доказана.

Пемма 2. K-предполный класс линейных автоматов T_1 порождается множеством $M = \{f_1, f_2, f_3\} = \{x_1 + x_2 + x_3, \xi \cdot x + 1, 1\}$, которое является базисом данного класса.

Доказательство. Класс T_1 есть класс автоматов, сохраняющих единицу в начальный момент времени. В представлении (4) это свойство можно выразить так:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0 \in T_1 \Leftrightarrow \sum_{j=0}^n \mu_j(0) = 1.$$
 (4)

Покажем, что $K(M) = T_1$. Каждый автомат из M сохраняет единицу в начальный момент, т.е. принадлежат классу T_1 . В силу K-замкнутости класса T_1 , $K(M) \subset T_1$.

Проводник можно получить в K-замыкании множества M, отождествив переменные автомата $f_1: f_1(x, x, x) = x + x + x = x \in K(M)$.

Для любого натурального m получим автомат вида $(\xi^m + 1) \cdot x$. Для этого сначала подставим (m-1) раз автомат f_2 в себя:

$$\tilde{f}_m(x) = \xi(\xi(\dots \xi(\xi x + 1) + 1) \dots) + 1 =$$

$$= \xi^m \cdot x + (\xi^{m-1} + \xi^{m-2} + \dots + \xi + 1) \in K(M). \tag{5}$$

Далее, подставляя f_3 в автоматы $\tilde{f}_m(x)$, можно получить для любого m все константы вида $c_m=(\xi^m+\xi^{m-1}+\xi^{m-2}+\ldots+\xi+1)\in K(M)$. Тогда сделаем следующее:

$$f_1(\tilde{f}_m(x), c_{m-1}, x) = (\xi^m \cdot x + (\xi^{m-1} + \xi^{m-2} + \dots + \xi + 1)) +$$

$$+(\xi^{m-1} + \xi^{m-2} + \dots + \xi + 1) + x = (\xi^m + 1) \cdot x \in K(M).$$
 (6)

Покажем, что для любого многочлена $\tilde{u} \in E_2[\xi]$ в K-замыкании множества M есть автомат $(1+\xi \tilde{u})\cdot x \in K(M)$. Пусть $\tilde{u}=a_1+a_2\xi+\ldots+a_s\xi^{s-1}+a_{s+1}\xi^s,\ s\in\mathbb{N}$. Также введем многочлен u:

$$u = 1 + \xi \tilde{u} = 1 + \xi (a_1 + a_2 \xi + \ldots + a_s \xi^{s-1} + a_{s+1} \xi^s) =$$

$$= 1 + a_1 \xi + a_2 \xi^2 + \ldots + a_s \xi^s + a_{s+1} \xi^{s+1}. \tag{7}$$

Как было показано выше, для любого натурального m, в том числе и для $m: m=\overline{1,(s+1)},\ g_m(x)=(a_m\xi^m+1)\cdot x\in K(M)$ (если $a_m=0$, то соответствующий член многочлена является проводником, который также есть в K(M)).

Рассмотрим 2 случая:

1) s - четное число. Тогда слагаемых в \tilde{u} (s+1) нечетное количество. В таком случае, в сумматор от s+1 переменной f_{s+1} (подставляя автомат f_1 в себя, в K(M) можно получить сумматор от любого нечетного числа переменных) подставляются автоматы $g_m(x), m = \overline{1, (s+1)}$:

$$f_{s+1}(g_1(x), \dots, g_{s+1}(x)) = \sum_{m=1}^{s+1} (a_m \xi^m + 1) \cdot x = \sum_{m=1}^{s+1} a_m \xi^m \cdot x + x =$$

$$= (1 + a_1 \xi + \ldots + a_{s+1} \xi^{s+1}) x = (1 + \xi (a_1 + \ldots + a_{s+1} \xi^s)) x = (1 + \xi \tilde{u}) x \in K(M).$$
(8)

2) s - нечетное число, т.е. в \tilde{u} (s+1) слагаемых четное количество. Тогда в сумматор от s+2 переменных f_{s+2} подставляются автоматы $g_m(x), m=\overline{1,(s+1)}$ и проводник:

$$f_{s+2}(g_1(x), \dots, g_{s+1}(x), x) = \sum_{m=1}^{s+1} (a_m \xi^m + 1) \cdot x + x =$$

$$= \sum_{m=1}^{s+1} a_m \xi^m \cdot x + x = (1 + \xi \tilde{u}) x \in K(M). \tag{9}$$

Также для любого $\mu \in E_2'(\xi)$ верно, что $(1+\xi\mu)\cdot x \in K(M)$. Представим μ в виде формальной дроби:

$$\mu = \frac{u}{1 + \xi \cdot v}, \quad u, v \in E_2[\xi].$$
 (10)

Знаем, что $\forall u', v \in E_2[\xi]$ $(1 + \xi u')x$, $(1 + \xi v)x \in K(M)$ (u = u' + v, u' = u + v). Подставим эти автоматы в f_1 и отождествим две переменные:

$$f_1((1+\xi u')x, (1+\xi v)x_1, x_1) = (1+\xi u')x + (1+\xi v)x_1 + x_1 =$$

$$= (1+\xi u')x + \xi vx_1 \in K(M). \tag{11}$$

Затем применим операцию обратной связи по x_1 (переменная x_1 не является непосредственной, поэтому операция обратной связи применима по данной переменной):

$$Fb_{x_1}(f_1((1+\xi u')x, (1+\xi v)x_1, x_1)) = \frac{1+\xi u'}{1+\xi v}x =$$

$$= \left(1+\xi \cdot \frac{u'+v}{1+\xi v}\right)x = (1+\xi \mu)x \in K(M). \tag{12}$$

Подставив в $(1+\xi\mu)x$ автомат f_3 , получим в K(M) любую константу вида $(1+\xi\mu)$.

Введем ещё 2 вспомогательные функции из K(M):

$$h_1(x, x_1) = f_1((1+\xi\mu)x, x, x_1) = (1+\xi\mu)x + x + x_1 = \xi\mu x + x_1 \in K(M)$$
 (13)

$$h_2(x_1) = h_1(1, x_1) = \xi \mu + x_1 \in K(M) \tag{14}$$

Для автомата из T_1 верно, что среди n+1 слагаемых его разложения (n переменных и 1 константа) нечетное число s слагаемых имеет вид (1): или $(1+\xi\mu)x$, или $(1+\xi\mu)$; остальные m слагаемых имеют вид (2): $\xi\mu x$ или $\xi\mu$.

Можно выделить 4 случая построения произвольного автомата из T_1 .

- 1) n четное число и свободный член автомата имеет вид (1). Тогда s-1 переменная имеет вид (1), оставшиеся n-(s-1)=m (четное число) переменных имеют вид (2). В сумматор от (n+1) переменной подставляются s автоматов вида (1) (они есть в K(M)), в оставшиеся позиции подставляются автоматы $h_1(x,x_1)$, при этом переменная x_1 отождествляется и, ввиду четности m, сокращается.
- 2) n четное число и свободный член автомата имеет вид (2). Тогда s переменных имеет вид (1), оставшиеся n-s=m-1 (нечетное число) переменных имеют вид (2). В сумматор от (n+1) переменной подставляются s автоматов вида (1) (они есть в K(M)), в оставшиеся позиции подставляются автоматы $h_1(x,x_1),\ h_2(x_1),\$ при этом в полученном автомате переменная x_1 , ввиду четности m, сокращается.
- 3) n нечетное число и свободный член автомата имеет вид (1). Тогда s-1 переменных имеет вид (1), оставшиеся n-(s-1)=m (нечетное число) переменных имеют вид (2). В сумматор от (n+2) переменной подставляются s автоматов вида (1) (они есть в K(M)), в оставшиеся позиции подставляются автоматы $h_1(x,x_1)$ и автомат $g(x_1)=x_1$, при этом переменная x_1 отождествляется, и, ввиду четности (m+1), сокращается.
- 4) n нечетное число и свободный член автомата имеет вид (2). Тогда s переменных имеет вид (1), оставшиеся n-s=m-1 (четное число) переменных имеют вид (2). В сумматор от (n+2) переменной подставляются s автоматов вида (1) (они есть в K(M)), в оставшиеся позиции подставляются автоматы $h_1(x,x_1)$, $h_2(x_1)$ и автомат $g(x_1)=x_1$, при этом, ввиду четности m, переменная x_1 сокращается.

Подобным образом может быть получен любой автомат из класса T_1 . Следовательно, $T_1 \subset K(M)$. Что приводит нас к заключению, что $T_1 = K(M)$.

Покажем, что множество M является базисом класса T_1 . Сумматор $x_1+x_2+x_3$ является единственным автоматом в M от более, чем от одной переменной, поэтому $K(\{\xi\cdot x+1,\ 1\})\neq T_1$. Вез автомата $f_2=\xi\cdot x+1$ с помощью операций композиции из множества M можно получить только автоматы вида $f(x_1,\ldots,x_n)=x_1+\ldots+x_n+a_0\xi,\ a_0\in E_2$, т.е. $K(\{f_1,f_3\})\neq T_1$. Заметим, что сумматор от трех переменных сохраняет любую последовательность произвольной длины. Автомат f_3 не содержится в K-замыкании $\{x_1+x_2+x_3,\ \xi\cdot x+1\}$, т.к. автоматы f_1,f_2 сохраняют последовательность длины f_3 в f_3 выдает последовательность 10. Можно показать, что автомата f_3 в f_3 выдает последовательность 10. Можно показать, что автомата f_3 в f_3 выдает последовательность 10. В связи с чем, множество f_3 в f_3 выдает последовательность 10. В связи с чем, множество f_3 в f_3 выдает последовательность 10. Можно показать, что автомата f_3 в f_3 в f_4 замыкании множества f_4 f_4 f_5 нет. В связи с чем, множество f_4 является базисом класса f_4 . Лемма доказана полностью.

Пемма 3. K-предполный класс линейных автоматов V_1 порождается множеством $M = \{f_1, f_2, f_3\} = \{\xi x_1 + x_2, \xi \cdot x, x + 1\}$, которое является базисом данного класса.

Доказательство. Автомат класса $V_1 = \{f | f \in L_2, f \text{ имеет не более } 1$ непосредственной переменной } в разложении (4) представляется в таком

виде:
$$f(x_1,\ldots,x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0 \in V_1$$

виде: $f(x_1,\ldots,x_n)=\sum\limits_{i=1}^n\mu_ix_i+\mu_0\in V_1.$ x_i — непосредственная переменная автомата $f\Leftrightarrow \mu_i(0)=1\Leftrightarrow \mu_i=0$ $1 + \xi \mu', \ \mu' \in E_2'(\xi).$

Докажем, что $K(M) = V_1$. Каждый автомат множества M имеет не более 1 непосредственной переменной, и, поскольку класс V_1 является K-замкнутым, $K(M) \subset V_1$.

Нулевой автомат содержится в $K(M): Fb_x(\xi x) = 0 \in K(M)$.

Проводник также есть в $K(M): f_1(0,x) = x = 1 \cdot x \in K(M)$.

Подставив автомат f_2 в себя m-1 раз (для любого натурального m), получим автомат $\xi^m x \in K(M)$:

$$f_2(f_2(..(f_2(x)...) = \xi^m x \in K(M).$$
 (15)

Покажем, что для любого многочлена $u=\sum_{i=0}^s=a_i\xi^i\in E_2[\xi],\ s\in$

 $\mathbb{Z}_{+}, u \cdot x \in K(M)$. Докажем этот факт для произвольного многочлена u с помощью математической индукции по степени многочлена s.Действительно, многочлены нулевой степени (u = 0, u = 1) реализуется в K(M) с помощью нулевого автомата и проводника, присутствующих в K(M). Для s=1 многочлену $u=\xi$ соответствует автомат f_2 , а для многочлена $u = \xi + 1$ в замыкании K(M) есть такой автомат: $f_1(x,x) = \xi \cdot x + x = (\xi + 1)x \in K(M).$

Пусть данный факт доказан для многочленов степени s. Тогда для любого многочлена степени (s+1) $u = a_0 + \ldots + a_s \xi^s + \xi^{s+1}$ получим искомый автомат следующим образом:

$$f_1(\xi^s x, (a_0 + \dots + a_s \xi^s) x) = \xi(\xi^s x) + (a_0 + \dots + a_s \xi^s) x =$$

$$= (a_0 + \dots + a_s \xi^s + \xi^{s+1}) x = u \cdot x \in K(M).$$
(16)

Также для любого $\mu \in E_2'(\xi)$ верно, что $\mu \cdot x \in K(M)$. Представим элемент $E_2'(\xi)$ в виде дроби многочленов:

$$\mu = \frac{u}{1 + \xi \cdot v} \in E_2'(\xi), \ u, v \in E_2[\xi]. \tag{17}$$

В автомат f_1 подставим автоматы $ux, vx \in K(M)$: $f_1(vx_1, ux_2) = \xi vx_1 + ux_2 \in K(M)$. И применим операцию обратной связи по не непосредственной переменной x_1 :

$$Fb_{x_1}(f_1(vx_1, ux_2)) = \frac{u}{1 + \xi v} \cdot x_2 = \mu \cdot x_2 \in K(M).$$
 (18)

Подставим в автомат f_3 нулевой автомат: $f_3(0) = 1 \in K(M)$. Подставив, в свою очередь, единицу в автоматы $\mu \cdot x$, получим в K-замыкании множества M любую константу μ из $E_2'(\xi)$.

Так как любой элемент $E_2'(\xi)$ представим или в виде $\mu = \xi \mu'$, или в виде $\mu = 1 + \xi \mu'$, $\mu' \in E_2'(\xi)$, то автомат $x + \mu$ также можно получить в K-замыкании множества M.

В первом случае в автомат f_1 подставим константу $\mu' \in K(M)$:

$$f_1(\mu', x) = \xi \mu' + x \in K(M).$$
 (19)

Во втором случае в автомат f_3 поставим только что полученный автомат $\mathcal{E}\mu' + x$:

$$f_3(\xi\mu' + x) = \xi\mu' + x + 1 = x + (1 + \xi\mu') = x + \mu \in K(M).$$
 (20)

Заметим, что любой автомат f из V_1 имеет следующий вид:

$$f(x_1, \dots x_n) = \sum_{i=1}^{n-1} \xi \mu_i' x_i + \mu_n x_n + \mu_0, \text{ где } \mu_n, \mu_0, \mu_i' \text{ любые элементы } E_2'(\xi).$$

$$(21)$$

Покажем, что любой такой автомат есть в K(M). Подставляя на второй вход автомата f_1 самого себя, получим: $f_1(x_1, f_1(x_2, \dots f_1(x_{n-1}, x_n) \dots) = \sum_{i=1}^{n-1} \xi x_i + x_n$. Далее поставим на первые n-1 входов автоматы $\mu_i' x_i \in K(M)$, а на n-ый вход подставляется автомат $\mu_n x_n + \mu_0 \in K(M)$. Таким образом, любой автомат из класса V_1 содержится в K-замыкании множества $M: V_1 \subset K(M)$. И в связи с вышеизложенным получаем, что $V_1 = K(M)$.

Множество M является базисом класса V_1 . Автоматы f_1 и f_3 сохраняют в начальный момент функции $\{x, \bar{x}\}$, а автомат f_2 не сохраняет (в начальный момент у данного автомата тождественный ноль). Можно показать, что ввиду наличия у f_2 такого свойства $f_2 \notin K(\{f_1, f_3\})$. Так как автомат f_1 является единственным автоматом от более, чем одной переменной, то $K(\{f_2, f_3\}) \neq V_1$. Заметим, что автоматы f_1 , f_2 также принадлежат классу автоматов T_0 , а автомат f_3 нет. В силу K-замкнутости класса $T_0: f_3 \notin K(\{f_1, f_2\})$. В результате приходим к выводу, что множество M — базис класса V_1 . Лемма полностью доказана.

Лемма 4. K-предполный класс линейных автоматов V_2 порождается множеством $M = \{f_1, f_2, f_3\} = \{x_1 + x_2 + x_3, \xi \cdot x_1 + x_2, x + 1\}$, которое является базисом данного класса.

Доказательство. Рассматриваемый класс V_2 — это класс линейных автоматов, имеющих нечетное число непосредственных переменных. В разложении (4) это свойство можно выразить следующим образом:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0 \in V_2 \Leftrightarrow \sum_{i=1}^n \mu_i(0) = 1.$$
 (22)

Покажем, что $K(M)=V_2$. Автомат f_1 имеет 3 непосредственные переменные, автоматы f_2, f_3-1 непосредственную переменную. Так как класс V_2 K-замкнут, то $K(M)\subset V_2$.

Отождествив переменные автомата f_1 , получим в K-замыкании множества M проводник: $f_1(x, x, x) = x + x + x = x \in K(M)$.

Также в K(M) для любого натурального m есть автомат $(\xi^m + 1)x$. Подставим m-1 раз автомат f_2 в себя и отождествим переменные результирующего автомата:

$$\hat{f}_m(x) = \xi(\xi(\dots \xi(\xi x + x) + x) \dots + x) + x = (\xi^m x + \xi^{m-1} x + \xi^{m-2} x + \dots + \xi x + x) =$$

$$= (\xi^m + \xi^{m-1} + \xi^{m-2} + \dots + \xi + 1) x \in K(M). \tag{23}$$

Затем подставим две подобные автоматные функции в f_1 и аналогично отождествим все переменные:

$$\tilde{f}_m(x) = f_1(\hat{f}_m(x), \hat{f}_{m-1}(x), x) = (\xi^m + \xi^{m-1} + \xi^{m-2} + \dots + \xi + 1)x + (\xi^{m-1} + \xi^{m-2} + \dots + \xi + 1)x + x = (\xi^m + 1)x \in K(M).$$
 (24)

Для любого многочлена $\tilde{u} \in E_2[\xi]$ в K(M) можно получить автомат вида $(1+\xi \tilde{u})x$. Обозначим $\tilde{u}=a_1+a_2\xi+\ldots+a_s\xi^{s-1}+a_{s+1}\xi^s,\ s\in\mathbb{Z}_+$. Также введем многочлен u:

$$u = 1 + \xi \tilde{u} = 1 + \xi (a_1 + a_2 \xi + \dots + a_s \xi^{s-1} + a_{s+1} \xi^s) =$$

$$= 1 + a_1 \xi + a_2 \xi^2 + \dots + a_s \xi^s + a_{s+1} \xi^{s+1}. \tag{25}$$

Докажем это включение, используя метод математической индукции по степени многочлена s. Для многочленов нулевой степени:

$$\tilde{u} = 0 \Rightarrow (1 + 0 \cdot \xi)x = x \in K(M); \tag{26}$$

$$\tilde{u} = 1 \Rightarrow (1 + 1 \cdot \xi)x = f_2(x, x) = \xi x + x \in K(M).$$
 (27)

Для многочленов первой степени верно: $\tilde{u} = a_1 + \xi \Rightarrow u = 1 + \xi(a_1 + \xi) = 1 + a_1\xi + \xi^2$. Подставим в автомат f_1 автоматы $\tilde{f}_2(x)$, $(1 + a_1\xi)x \in K(M)$:

$$f_1(\tilde{f}_2(x), (1+a_1\xi)x, x) = (\xi^2+1)x + (1+a_1\xi)x + x =$$

$$= (1 + a_1 \xi + \xi^2)x = (1 + \xi(a_1 + \xi))x \in K(M). \tag{28}$$

Пусть для многочленов \tilde{u} степени s утверждение верно. Докажем его для любого многочлена \tilde{u} степени s+1. В автомат f_1 подставим автомат $\tilde{f}_{s+2}(x) \in K(M)$ и автомат $(1+a_1\xi+\ldots+a_{s+1}\xi^{s+1})x=(1+\xi(a_1+\ldots+a_{s+1}\xi^s))x \in K(M)$ (по предположению индукции такой автомат в K-замыкании множества M есть):

$$f_1(\tilde{f}_{s+2}(x), (1 + a_1\xi + \dots + a_{s+1}\xi^{s+1})x, x) = (\xi^{s+2} + 1)x + (1 + a_1\xi + \dots + a_{s+1}\xi^{s+1})x + x = (1 + a_1\xi + \dots + a_{s+1}\xi^{s+1} + \xi^{s+2})x =$$

$$= (1 + \xi(a_1 + \dots + a_{s+1}\xi^s + \xi^{s+1}))x \in K(M).$$
(29)

Для любого $\mu \in E_2'(\xi)$ покажем, что $(1 + \xi \mu) \cdot x \in K(M)$. В виде формальной дроби μ представляется так:

$$\mu = \frac{u}{1 + \xi \cdot v}, \quad u, v \in E_2[\xi]. \tag{30}$$

Подставим в сумматор от трех переменных автоматы $(1 + \xi u')x$, $(1 + \xi v)x$ и $x \in K(M) \quad \forall u', v \in E_2[\xi] \quad (u = u' + v, u' = u + v)$ соответственно и отождествим вторую и третью переменные:

$$g(x_1, x_2) = f_1((1 + \xi u')x_1, (1 + \xi v)x_2, x_2) =$$

$$= (1 + \xi u')x_1 + (1 + \xi v)x_2 + x_2 = (1 + \xi u')x + \xi vx_2 \in K(M).$$
(31)

Затем применяется операция обратной связи по не непосредственной переменной x_2 :

$$Fb_{x_2}(g(x_1, x_2)) = \frac{1 + \xi u'}{1 + \xi v} x_1 = \left(1 + \xi \cdot \frac{u' + v}{1 + \xi v}\right) x_1 = (1 + \xi \mu) x_1 \in K(M).$$
(32)

Далее покажем, что для любой константы μ' из $E_2'(\xi)$ автомат $\mu x + \mu' \in K(M)$ ($\mu = 1 + \xi \hat{\mu}, \ \hat{\mu} \in E_2'(\xi)$). Для этого сначала докажем это для любого $\mu' = \tilde{u}$, где $\tilde{u} \in E_2[\xi]$. Многочлены нулевой степени: $\mu x + 0 \in K(M)$, $\mu x + 1 = f_3(\mu x) \in K(M)$. Для многочленов первой степени также рассмотрим два случая.

Первый случай: $\tilde{u}=\xi$. Здесь на первый вход автомата f_2 подставим автомат f_3 , затем отождествим переменные и получим следующее:

$$f_2(f_3(x), x) = \xi(x+1) + x = (1+\xi)x + \xi \in K(M). \tag{33}$$

Искомый автомат получим с помощью автомата f_1 :

$$f_1((1+\xi)x + \xi, (1+\xi)x, \mu x) = \mu x + \xi \in K(M)$$
(34)

Второй случай: $\tilde{u} = \xi + 1$. В автомат f_3 подставим автомат из случая 1:

$$f_3(\mu x + \xi) = \mu x + \xi + 1 \in K(M). \tag{35}$$

Заметим, что для любого натурального m автомат $\xi^m + \mu x \in K(M)$. Действительно, пусть это утверждение верно для m-1 (для m=1 доказано выше). Тогда:

$$f_2(\xi^{m-1} + x, x) = \xi(\xi^{m-1} + x) + x = \xi^m + (1 + \xi)x \in K(M)$$

$$\tilde{g}_m(x) = f_1(f_2(\xi^{m-1} + x, x), (1 + \xi)x, \mu x) =$$

$$= \xi^m + (1 + \xi)x + (1 + \xi)x + \mu x = \xi^m + \mu x \in K(M).$$
(37)

Пусть для любого многочлена \tilde{u} степени m-1 доказано, что $\mu x + \tilde{u} \in K(M)$. Покажем, что для любого многочлена $u = a_0 + a_1 \cdot \xi + \ldots + a_{m-1} \cdot \xi^{m-1} + \xi^m$ это утверждение также верно. Для этого в автомат f_1 подставим автоматы из K-замыкания множества M ($\xi^m + \mu x$), μx , ($a_0 + a_1 \xi + \ldots + a_{m-1} \xi^{m-1}$) $+ \mu x$:

$$f_1\Big(\big((a_0 + a_1\xi + \dots + a_{m-1}\xi^{m-1}) + \mu x\big), \big(\xi^m + \mu x\big), \mu x\Big) = (a_0 + a_1\xi + \dots + a_{m-1}\xi^{m-1}) + \mu x + \big(\xi^m + \mu x\big) + \mu x = (a_0 + a_1\xi + \dots + a_{m-1}\xi^{m-1} + \xi^m) + \mu x = \mu x + \tilde{u} \in K(M).$$
(38)

Также можно получить, что $\forall \ \mu_0 = \frac{u}{1+\xi v} \in E_2'(\xi), \ u,v \in E_2[\xi] \ \mu_0 + \mu x \in K(M) \ (\mu:\mu(0)=1).$ Сначала введем вспомогательный автомат:

$$g(x_1, x_2) = f_1(u + (1 + \xi v)\mu x_1, (1 + \xi v)x_2, x_2) = u + (1 + \xi v)\mu x_1 + (1 + \xi v)x_2 + x_2 = u + (1 + \xi v)\mu x_1 + \xi v x_2 \in K(M).$$
(39)

А затем применим операцию обратной связи по не непосредственной переменной x_2 :

$$Fb_{x_2}(g(x_1, x_2)) = \frac{u}{1 + \xi v} + \frac{1 + \xi v}{1 + \xi v} \mu x_1 = \mu_0 + \mu x_1 \in K(M). \tag{40}$$

W, наконец, докажем, что любой автомат из V_2 от любого количества переменных принадлежит K(M). Действительно, все автоматы из V_2 от одной переменной в K(M) есть. Автоматы V_2 от двух переменных имеют одну непосредственную переменную и одну не непосредственную:

$$f(x_1, x_2) = (1 + \xi \mu_1') x_1 + \xi \mu_2' x_2 + \mu_0 \in V_2$$
(41)

Таким автоматы содержатся в K(M):

$$f_1((1+\xi\mu_1')x_1+\mu_0, (1+\xi\mu_2')x_2, x_2) = f(x_1, x_2) \in V_2$$
 (42)

Пусть любой автомат $\hat{f}(x_1, \ldots, x_n)$ из V_2 от n переменных принадлежит K(M). Чтобы увеличить количество непосредственных переменных для сохранности нечетности их числа, необходимо добавить сразу 2 непосредственные переменные x_{n+1} и x_{n+2} :

$$\tilde{f}(x_1, \dots, x_n, x_{n+1}, x_{n+2}) = \hat{f}(x_1, \dots, x_n) + (1 + \xi \mu'_{n+1}) x_{n+1} + (1 + \xi \mu'_{n+2}) x_{n+2} \in K(M).$$
(43)

Чтобы увеличить количество не непосредственных переменных достаточно добавить одну x_{n+1} переменную:

$$\tilde{f}(x_1, \dots, x_n, x_{n+1}) = \hat{f}(x_1, \dots, x_n) + (1 + \xi \mu_{n+1}) x_{n+1} + x_{n+1} =$$

$$= \hat{f}(x_1, \dots, x_n) + \xi \mu_{n+1} x_{n+1} \in K(M). \tag{44}$$

Таким образом, любой автомат из V_2 содержится в K(M): $V_2 \subset K(M)$. Следовательно, с учетом вышеизложенного $K(M) = V_2$.

Докажем, что порождающая система M является базисом класса V_2 . Действительно, автоматы $f_1, f_2 \in T_0 - K$ -замкнутому классу, отличному от V_2 , т.е. $K(\{f_1, f_2\}) \neq V_2$ (автомат $f_3 \not\in T_0$). Исключить автомат f_2 не получится, поскольку в K-замыкании сумматора от трех переменных и автомата f_3 можно получить только автоматы вида $f(x_1, \ldots, x_{2m+1}) =$

 $x_1 + \ldots + x_{2m+1} + a_0, \quad a_0 \in E_2$, т.е. $f_2 \notin K(\{f_1, f_3\})$. А без сумматора от трех переменных нельзя получить автомат, у которого будет n непосредственных переменных для любого нечетного числа n. Заметим, что среди операций композиции только операция подстановки позволяет увеличивать количество переменных автомата, но с помощью этой операции, в K-замыкании автоматов f_2 , f_3 нельзя получить автомат более, чем от одной непосредственной переменной. На основании вышеизложенного приходим к выводу, что множество M является базисом класса V_2 . Лемма доказана полностью.

Лемма 5. K-предполный класс линейных автоматов M_1 порождается множеством $M = \{f_1, f_2, f_3, f_4\} = \{\xi^3 x_1 + x_2 + x_3, \xi^2 \cdot x, 1, \xi\}$, которое является базисом данного класса.

Доказательство. По определению класса M_1 любой коэффициент $\mu \in U(f)$ при переменной принадлежит классу $M_1^{(1)}$. В разложении (4) любой автомат класса $M_{\rm ln}$ представляется так:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \mu_i x_i + \mu_0 \in M_1 \Leftrightarrow \mu_i \in M_1^{(1)}, \ i = \overline{1, n}, \ \mu_0 \in E_2'(\xi).$$
(45)

В свою очередь, свойство принадлежности $\mu_i \in M_1^{(1)}$ можно выразить следующим образом: $\mu_i \in M_1^{(1)} \Leftrightarrow \mu_i = a_0 + \xi^2 \mu_i', \ a_0 \in E_2, \ \forall \ \mu_i' \in E_2'(\xi)$. Другими словами, автомат класса M_1 выглядит так:

$$f(x_1, \dots, x_n) = \sum_{i=1}^{n} (a_0^i + \xi^2 \mu_i') x_i + \mu_0 \in M_1, \ a_0 \in E_2, \ \mu_i', \ \mu_0 \in E_2'(\xi).$$
 (46)

Докажем, что $K(M) = M_1$. Автоматы f_1, f_2 содержатся в классе M_1 , т.к. их коэффициенты при переменных принадлежат классу $M_1^{(1)}$. Автоматы f_3, f_4 — это константы, а классу M_1 принадлежат все константы из $E_2'(\xi)$. Поэтому, в силу K-замкнутости класса $M_1, K(M) \subset M_1$.

В K(M) есть нулевой автомат: $Fb_x(f_2(x)) = 0 \in K(M)$.

Проводник также принадлежит K-замыканию множества M: $f_1(0,0,x) = x \in K(M)$.

Автомат $\xi^3 x$ аналогично выводится из автомата f_1 подстановкой нулевого автомата на его второй и третий входы: $f_1(x,0,0) = \xi^3 x \in K(M)$.

Заметим, что подставив на первый вход автомата f_1 нулевой автомат, мы получим сумматор от двух переменных: $f_1(0,x_2,x_3)=x_2+x_3\in K(M)$. То есть достаточно показать, что для любого $\mu\in E_2'(\xi)$ элементы вида $(a_0+\xi^2\mu)x$ и μ принадлежат K-замыканию множества M.

Докажем, что для любого многочлена $\tilde{u} \in E_2[\xi]$ в K(M) можно получить автомат вида $\xi^2 x \tilde{u} \in K(M)$, используя математическую индукцию

по степени многочлена s. Действительно, для s=0 было показано, что такие автоматы принадлежат K-замыканию множества M:

$$\xi^2 x \cdot 0 = 0 \in K(M); \tag{47}$$

$$\xi^2 x \cdot 1 = \xi^2 x = f_2(x) \in M. \tag{48}$$

Многочлены первой степени:

$$\xi^2 x \cdot \xi = \xi^3 x \in K(M); \tag{49}$$

$$\xi^2 x \cdot (1+\xi) = f_1(x, \xi^2 x, 0) = \xi^3 x + \xi^2 x = \xi^2 x (1+\xi) \in K(M).$$
 (50)

Пусть для любого многочлена $\tilde{u}=a_0+a_1\xi+\ldots+a_{s-1}\xi^{s-1}$ степени s-1 утверждение верно. Докажем, что соответствующий автомат содержится в K(M) и для любого многочлена степени s. Для этого достаточно показать, что для любого натурального $s\in\mathbb{N}$ автомат $\xi^2\cdot\xi^sx$ принадлежит K-замыканию множества M (для s=1 доказано выше). Рассмотрим 2 случая:

1) $s=2\cdot m,\ m\in\mathbb{N}.$ Для этого случая достаточно m раз поставить автомат f_2 в себя:

$$f_2(f_2(\dots f_2(f_2(x))\dots) = \xi^2(\xi^2(\dots \xi^2(\xi^2 x)\dots) =$$

$$= \xi^2 \cdot \xi^{2 \cdot m} x = \xi^2 \cdot \xi^s x \in K(M).$$
(51)

2) $s=2\cdot m+1, \ m\in\mathbb{N}.$ Искомый автомат можно получить, подставив в автомат ξ^3x m раз автомат f_2 :

$$\xi^{3}(f_{2}(\dots f_{2}(f_{2}(x))\dots) = \xi^{3}(\xi^{2}(\xi^{2}(\dots(\xi^{2}x)\dots) = \xi^{2+2(m-1)+3}x = \xi^{2} \cdot \xi^{s}x \in K(M).$$
(52)

Очевидно, $2(m-1)+3=2\cdot m+1$.

Таким образом, для любого многочлена u степени s (обозначим $u=\tilde{u}+\xi^s$) автомат $\xi^2x\cdot u$ в K(M) есть:

$$\xi^{2}\tilde{u}x + \xi^{2} \cdot \xi^{s}x = \xi^{2}(\tilde{u} + \xi^{s})x = \xi^{2} \cdot ux \in K(M).$$
 (53)

Покажем, что для любого элемента $\mu \in E_2'(\xi)$ автомат $\xi^2 \mu x$ принадлежит K-замыканию множества M. Произвольный элемент из $E_2'(\xi)$ можно представить так:

$$\mu = \frac{u}{1 + \xi \cdot v}, \quad u, v \in E_2[\xi].$$
 (54)

Также рассмотрим 2 случая:

1) $v = 0 + a_1 \xi + a_2 \xi^2 + \ldots + \xi^s = \xi (a_1 + a_2 \xi + \ldots + \xi^{s-1}) = \xi \tilde{v}$. То есть μ имеет следующий вид:

$$\mu = \frac{u}{1 + \xi^2 \cdot \tilde{v}}, \quad u, \tilde{v} \in E_2[\xi]. \tag{55}$$

Тогда сначала подставим в сумматор от двух переменных автоматы $\xi^2 ux$, $\xi^2 \tilde{v}x \in K(M)$: $\tilde{f}(x_1, x_2) = \xi^2 ux_1 + \xi^2 \tilde{v}x_2 \in K(M)$. После чего применим операцию обратной связи по второй переменной:

$$Fb_{x_2}(\tilde{f}(x_1, x_2)) = \frac{\xi^2 u}{1 + \xi^2 \tilde{v}} x_1 = \xi^2 \frac{u}{1 + \xi^2 \tilde{v}} x_1 = \xi^2 \mu x \in K(M).$$
 (56)

2) $v=1+a_1\xi+a_2\xi^2+\ldots+\xi^s=1+\xi \tilde{v}$. Соответствующий элемент $E_2'(\xi)$ выглядит так:

$$\mu = \frac{u}{1 + \xi + \xi^2 \cdot \tilde{v}}, \ u, \tilde{v} \in E_2[\xi].$$
 (57)

Покажем, что вспомогательный автомат $g(x) = \frac{1}{1+\xi^2} x$ содержится в K-замыкании M. Действительно, подставим автомат f_2 на первый вход сумматора от двух переменных и применим по этой переменной операцию обратной связи:

$$g(x) = Fb_{x_1}(\xi^2 x_1 + x_2) = \frac{1}{1 + \xi^2} x_2 \in K(M).$$
 (58)

Заметим, что для поля E_2 верно $(1+\xi^2) = (1+\xi)^2$. Для рассматриваемого случая сначала подставим на оба входа сумматора от двух переменных автомат g(x):

$$\hat{g}(x_1, x_2) = \frac{1}{1 + \xi^2} x_1 + \frac{1}{1 + \xi^2} x_2 \in K(M). \tag{59}$$

Затем, поскольку для любого многочлена u из кольца $E_2'[\xi]$ доказано, что $\xi^2 ux$ есть в K-замыкании M, то автоматы $\xi^2 (1+\xi) \tilde{v} x$ и $\xi^2 (1+\xi) ux$ также содержатся в K(M). Подставим их на входы только что полученного автомата $\hat{g}(x_1, x_2)$:

$$\tilde{g}(x_1, x_2) = \hat{g}(\xi^2(1+\xi)\tilde{v}x_1, \xi^2(1+\xi)ux_2) = \frac{1}{1+\xi^2} \Big(\xi^2(1+\xi)\tilde{v}\Big)x_1 + \frac{1}{1+\xi^2}\Big(\xi^2(1+\xi)\tilde{v}\Big)x_1 + \frac{1}{1+\xi^2}\Big(\xi^2(1+\xi)\tilde{v}\Big)x_2 + \frac{1}{1+\xi^2}\Big(\xi^2(1+\xi)\tilde{v}\Big)x_1 + \frac{1}{1+\xi^2}\Big(\xi^2(1+\xi)\tilde{v}\Big)x_1 + \frac{1}{1+\xi^2}\Big(\xi^2(1+\xi)\tilde{v}\Big)x_2 + \frac{1}{1+\xi$$

$$+\frac{1}{1+\xi^2}\left(\xi^2(1+\xi)u\right)x_2 = \frac{\xi^2\tilde{v}}{1+\xi}x_1 + \frac{\xi^2u}{1+\xi}x_2 \in K(M). \tag{60}$$

И, наконец, применим операцию обратной связи по первой переменной:

$$Fb_{x_1}(\tilde{g}(x_1, x_2)) = \frac{\xi^2 u}{1 + \xi} \cdot \frac{1}{1 + \frac{\xi^2 \tilde{v}}{1 + \xi}} x_2 = \frac{\xi^2 u}{1 + \xi} \cdot \frac{1 + \xi}{1 + \xi + \xi^2 \tilde{v}} x_2 =$$

$$= \frac{\xi^2 u}{1 + \xi + \xi^2 \tilde{v}} x_2 = \xi^2 \mu x \in K(M). \tag{61}$$

Таким образом, для любого $\mu=\xi^2\mu',\ \mu'\in E_2'(\xi)$ доказано, что $\mu\cdot x\in K(M)$. Очевидно, для любого $\mu=1+\xi^2\mu',\ \mu'\in E_2'(\xi)$ соответствующий автомат также есть в $K(M):\ x+\xi^2\mu'\cdot x=(1+\xi^2\mu')x\in K(M)$.

Заметим, что любую константу из $E_2'(\xi)$ можно представить так: $\mu = a_0 + a_1 \xi + \xi^2 \mu'$, $\mu' \in E_2'(\xi)$, $a_0, a_1 \in E_2$. Подставив автомат f_3 в автоматы, представленные выше, получим любую константу вида $(a_0 + 0 \cdot \xi + \xi^2 \mu')$. Если в сумматор от двух переменных подставить на один вход автомат f_4 , а на другой вход — константы $(a_0 + 0 \cdot \xi + \xi^2 \mu')$, то получим в K-замыкании множества M любую константу из $E_2'(\xi)$.

Таким образом, в K(M) есть любой автомат из M_1 , т.е. $M_1 \subset K(M)$. И в силу написанного выше получаем, что $K(M) = M_1$.

Покажем, что множество M — это базис класса автоматов M_1 . Автомат f_1 является единственным автоматом более, чем от одной переменной, поэтому $K(\{f_2,f_3,f_4\}) \neq M_1$. f_1,f_2,f_4 принадлежат K-замкнутому классу T_0 , т.е. $K(\{f_1,f_2,f_4\}) \neq M_1$, а автомат $f_3 \notin T_0$. Автомат с нулевым свободным членом f_2 можно получить только применяя операции композиции к автомату с нулевым свободным членом f_1 . Коэффициенты автоматов f_1,f_2 в силу свойств класса M_1 принадлежат $K^{(1)}$ -замкнутому классу $M_1^{(1)}$. Несложно показать, что $\xi^2 \notin K^{(1)}(\{1,\xi^3\})$, то получить автомат f_2 в K-замыкании множества $\{f_1,f_3,f_4\}$ нельзя.

Заметим, что, поскольку автоматы f_1, f_2 имеют нулевой свободный член, то и в их K-замыкании можно получить только автомат с нулевым свободным членом. Т.е. используя операции композиции и автоматы из $K(\{f_1, f_2\})$, получить константу можно только, если подставить некоторую константу в автомат из $K(\{f_1, f_2\})$. С другой стороны, так как все коэффициенты при переменных этих автоматов $U(\{f_1, f_2\}) = \{1, \xi^2, \xi^3\}$ принадлежат $K^{(1)}$ -замкнутому классу $M_1^{(1)}$, то и в $K(\{f_1, f_2\})$

автоматы будут иметь коэффициенты при переменных из $M_1^{(1)}$ (в силу замкнутости соответствующих классов). Следовательно, в $K(\{f_1, f_2, f_3\})$ есть только константы из $M_1^{(1)}$. А, т.к. $\xi \notin M_1^{(1)}$, то и константы ξ в K-замыкании множества $\{f_1, f_2, f_3\}$ нет.

Ввиду выше изложенного, приходим к выводу, что множество M является базисом K-замкнутого класса M_1 . Лемма полностью доказана.

Теорема 1. Каждый предполный класс линейных автоматов, входящий в А-критериальную систему, является K-конечнопорожденным.

Доказательство. $\mathcal{J}_A = \{T_0, T_1, V_1, V_2, M_1\}$ — A-критериальная система в L_2 . В леммах 1—5 было доказано, что данные классы являются K-конечнопорожденными. Теорема доказана.

Следствие 1. Каждый предполный класс линейных автоматов, входящий в А-критериальную систему, является А-конечнопорожденным.

Доказательство. Поскольку оператор A-замыкания сильнее оператора K-замыкания, то из K-конечнопорожденности следует A-конечнопорожденность. В теореме 1 было доказано, что каждый класс A-критериальной системы является K-конечнопорожденным и, следовательно, он является A-конечнопорожденным классом автоматов. Следствие доказано.

4. Заключение

Таким образом, в настоящей работе был рассмотрен вопрос K- и A- конечнопорожденноти для предполных классов в классе линейных автоматов, функционирующих на полем Галуа, состоящим из двух элементов. Для всех предполных классов, образующих A-критериальную систему было доказано, что они являются K-конечнопорожденными и, следовательно, A-конечнопорожденными. Также для каждого из этих классов был предъявлен базис. В дальнейших публикациях будут представлены результаты решения подобных задач для других предполных классов линейных автоматов.

Автор выражает благодарность своему научному руководителю доценту кафедры МаТИС механико-математического факультета МГУ, д.ф.-м.н. Часовских Анатолию Александровичу за постановку задачи и помощь в исследовании.

Список литературы

- [1] Кудрявцев В. Б., Алешин С. В., Подколзин А. С., Введение в теорию автоматов, Наука, Москва, 1985, 320 с.
- [2] Клини С. К., "Представление событий в нервных сетях и конечных автоматах", Автоматы, 1956, С. 15-67.
- [3] Мур Э. Ф., "Умозрительные эксперименты с последовательностными машинами", *Автоматы*, 1956, С. 179-210.
- [4] Нейман Дж., "Вероятностная логика и синтез надежных организмов из ненадежных компонент", *Автоматы*, 1956, С. 68-139.
- [5] Яблонский С. В., "О построении тупиковых кратных экспериментов для автоматов", *Тр. МИАН СССР*, **133** (1973), С. 263—272.
- [6] Лупанов О. Б., "О сравнении двух типов конечных источников", Проблемы кибернетики, 9 (1963), С. 321–326.
- [7] Кудрявцев В. Б., "Теорема полноты для одного класса автоматов без обратных связей", *Проблемы кибернетики*, 8 (1962), С. 91-115.
- [8] Кудрявцев В. Б., "О мощности множеств предполных множеств некоторых функциональных систем, связанных с автоматами", *Проблемы кибернетики*, **13** (1965), С. 45–74.
- [9] Часовских А. А., "О полноте в классе линейных автоматов", Математические вопросы кибернетики, 3 (1991), С. 140—166.
- [10] Часовских А. А., "Проблема А-полноты линейно-автоматных функций над конечным полем", *Интеллектуальные системы*. *Теория и приложения*, **18**:1 (2014), С. 253—257.
- [11] Часовских А. А., "Проблема полноты в классах линейных автоматов", Интеллектуальные системы. Теория и приложения, **22**:2 (2018), С. 151-154.
- [12] Часовских А. А., "Максимальные подклассы в классах линейных автоматов над конечными полями", Дискретная математика, **31**:4 (2019), С. 88-101.
- [13] Гилл, А., Линейные последовательностные машины, Наука Москва, 1974, 288 с.
- [14] Лидл Р., Нидеррайтер Г., Конечные поля: в 2 т. Т. 1., Мир, Москва, 1988, 430 с.

The problem of K-finite generation for precomplete classes of linear automata constituting an A-criterion system in the space of linear automata.

Biryukova Veronika Andreevna

This article considers the problem of K- and A-finite generation for precomplete classes of linear automata operating over the Galois field consisting of two elements. The set of all studied classes is the A-criterion system in the class of linear automata. A finite basis was presented for each class under consideration.

Keywords: finite automaton, linear automaton, composition operation, feedback operation, completeness, closed class, precomplete class, K-finitely generated class, A-finitely generated class.

References

- [1] Kudryavtsev V.B., Alyoshin S.V., Podkolzin A.S., *Introduction to automata theory*, «Science», Moscow, 1985 (In Russian), 320 c.
- [2] S.C. Kleene, "Representation of events in nerve nets and finite automata", *Automata Studies*, 1956, 15-67 (In Russian).
- [3] E. F. MOORE, "Gedanken-experiments on sequential machines", *Automata Studies*, 1956, 179-210 (In Russian).
- [4] J. von Neumann, "Probabilistic logics and the synthesis of reliable organisms from unreliable components", *Automata Studies*, 1956, 68-139 (In Russian).
- [5] S. Yablonsky, "On the construction of dead-end multiple experiments for automata", *Proceedings of the Steklov Institute of Mathematics*, **133** (1973), 263—272 (In Russian).
- [6] O. Lupanov, "About comparing two types of finite sources", *Problems of cybernetics*, **9** (1963), 321–326 (In Russian).
- [7] V. Kudryavtsev, "Completeness theorem for one class of automata without feedback", *Problems of cybernetics*, **8** (1962), 91-115 (In Russian).
- [8] V. Kudryavtsev, "The Cardinality of Sets of Precomplete Sets of Some Functional Systems Related to Automata", *Problems of cybernetics*, **13** (1965), 45–74 (In Russian).
- [9] Chasovskih A.A, "Completeness in the class of linear automata", *Mathematical problems of cybernetics*, **3** (1991), 140—166 (In Russian).

- [10] Chasovskih A.A, "The problem of A-completeness of linear automaton functions over a finite field", *Intelligent Systems. Theory and Applications*, **18**:1 (2014), 253—257 (In Russian).
- [11] Chasovskih A.A, "The problem of completeness in classes of linear automata", *Intelligent Systems. Theory and Applications*, **22**:2 (2018), 151-154 (In Russian).
- [12] Chasovskih A.A., "Maximal subclasses in classes of linear automata over finite fields", *Discrete Math*, **31**:4 (2019), 88-101 (In Russian).
- [13] A. Gill, *Linear Sequential Circuits*, Science, Moscow, 1974 (In Russian), 288 c.
- [14] R. Lidl, H. Niederreiter, Finite Fields, volume 1, 'World', Moscow, 1988 (In Russian), 430 c.